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Abstract

A new, fast technique to measure the solar wind’s ambipolar E∥ routinely with 10% precision and accuracy is
demonstrated using 4 yr of 1 au electron data from the Wind 3DP experiment. The 3DP electron instrument duty
cycle determines E∥; 0.1 nV m−1 from a single spectrum over much shorter time intervals than those requiring
radial transits for pressure profiles. The measured weak electric field is invariably strong (in the dimensionless
sense of Dreicer), with a modal value of  = 0.8 , and positively correlated with solar wind speed, while E∥
decreases with increasing wind speed. These observations establish across all solar wind conditions the nearly
equal accelerations provided by E∥ and coulomb drags on thermal electrons, a central hypothesis of the Steady
Electron Runaway Model (SERM) for the solar wind. Filtered E∥ observations successfully recover previously
reported 1 au bulk speed dependence of electron temperature gradients. The filter screens for unstructured
spherically symmetric solar wind (USSSW) conditions of solar wind theory. Outside USSSW conditions much
shorter scaled pressure gradients (of both signs) and stronger |E∥| are observed predominantly in corotating
regimes. Consistent with modeling by Dreicer and SERM, the observed spectral hardness of electrons at
suprathermal energies is positively correlated with increasing local values of  across the 4 yr data set. Virtually
all strahl electrons, crucial to the electron heat flux, are shown to be confined within the local closed coulomb
separatrix of each spectrum as determined using the locally measured value of .
Unified Astronomy Thesaurus concepts: Plasma astrophysics (1261); Solar wind (1534); Space plasmas (1544);
Interplanetary particle acceleration (826); Collision processes (2065)

1. Introduction

The in situ diagnosis of space plasmas increasingly attempts
to characterize a wide set of physical parameters to help us
understand their behavior. This set usually includes the DC and
wave vectorial magnetic field B; the velocity V of the center of
mass; the two components of the unipolar electric field E⊥ and
vector electric waves; the three-dimensional velocity distribu-
tions of the electrons, protons, minor ions, energetic particles,
and cosmic rays; and often imaging. The ancillary information
allows moments through the pressure tensor and heat flux to be
obtained for each species by numerical integration over v.
These in situ studies are then used to frame interpretations for
the behavior of remote plasmas where diagnosis in this detail is
not possible.

The DC magnetic-field-aligned parallel electric field E∥ is
routinely unavailable, not because it is theoretically unim-
portant but because of the extreme difficulties in measuring it.
At 1 au this field can be theoretically estimated to be ( )0.1
nVm−1, roughly one million times weaker that the smallest

= ( )E 0.1 mVm−1 ever measured on spacecraft with long
wire double probes. Sun phase variations of spacecraft sheaths
already pose systematic problems for projecting out E∥ below
0.1 mVm−1 levels. In extreme contrast, the solar wind’s E∥
component is one ten-millionth the size of the DC unipolar and
more routinely measured solar wind electric field,

=^
-( )E 2 mV m 1 . From mechanical alignments alone E∥

cannot be determined by geometry after first measuring the
total solar wind E field. Limited rough empirical estimates of
E∥ in the solar wind have been reported after fitting the
witnessed electron pressure variation after moving ;0.5 au
with a slow time resolution set by Kepler mechanics of the
spacecraft trajectory.
Physically E∥ plays a critical role in any inhomogeneous and

thus astrophysical plasma. It is responsible for ensuring that
charge density is nearly zero (i.e., quasi-neutrality) almost
everywhere in the interconnected plasma system. In a very real
sense E∥ is the glue that gives a plasma the cohesiveness to be
approximately described as a high-temperature quasi-neutral
gas sharing many properties with those of uncharged gases.
With their high temperatures, plasmas invariably conduct heat;
however, undissuaded electrical currents generally accompany
the heat flow. Such currents can disrupt quasi-neutrality and
must be quenched by further adjustments of the local size and
variation of E∥(x).
Ironically, E∥ can also produce unexpected consequences for

the nominal hydrodynamics of the center of mass of a
hydrogenic plasma. When E∥ strives to suppress current while
permitting heat flow, it often does so by accelerating the
positive ions and decelerating the negative electrons in such a
way that the plasma’s quasi-neutral gas center of mass moves
in a favorable direction to elude the gravitational grasp of the
proximate star.
Thus, the physics of E∥ is intimately intertwined with a

challenging unsolved problem about astrophysical plasmas: a
quantitatively viable plasma description for the flow of heat in
the strong gradients that are required in astrophysical plasmas
and the ultimate cause for the formation of stellar winds that lift
gravitationally bound ions to be free of the star’s grasp. Such
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behavior and E∥ would not occur if the plasma were a sea of
bound neutral hydrogen atoms; such a neutral atmosphere
would remain bound to the star where it formed.

Recent attempts for this astrophysical problem involving
plasmas have drawn attention to the role of the strength of E∥ in
creating the ubiquitously observed leptokurtotic nonthermal
electron distributions in the solar wind; they are suggested to be
more efficient at supporting heat transport with less strain on
the maintenance of quasi-neutrality and zero current
(Scudder 2019b). Further, since E∥ must occur in astrophysics
because of its inhomogeneity, and because E∥ makes distribu-
tions nonthermal in lowest order, the Maxwell−Boltzmann
distribution is unlikely to be the lowest-order velocity
distribution in space plasmas. This sequence of arguments
constitutes a redirection for the much-needed transport recipes
in space plasmas (Scudder 2019c).

Kinetically the strength/importance of a given E∥ can be
gauged by comparing its electric force on any electron to the
proton coulomb collisional drag force on a typical electron.
This concept is due to Dreicer (1959, 1960), who introduced
the size of a critical field, Ec, that has since been used by other
authors to mean something different. In this paper Dreicer’s Ec

electric field is denoted by ED. It is conceptually defined in
terms of the ion drag felt by an electron moving with the
electron thermal speed, we, defined by =mw kT2e e

2 and the
coulomb rate in a plasma for ion-induced momentum loss of
that speed electron, symbolically noted as ν(we). Because the
collisional rates in a plasma are strongly speed dependent, the
preceding definition involves specific rates for which there is
no ambiguity that are completely delineated in Equation (A1).
For a proton plasma ED is defined by

nº ( ) ( )eE m w w , 1D e e e

which can be rewritten in terms of fundamental plasma
constants in Equation (A1) and other ways that are easier to
remember, such as

l
l

n
= º

( )
( )eE

kT w

w

2
; , 2D

e e

emfp
mfp

also derived there.
With this definition Dreicer suggested the numerical ratio of

the magnitude of the parallel electric field to ED as a measure of
the strength of E∥. In this paper the symbol  is used for this
nonnegative dimensionless strength:

 º
∣ ∣

( )
E

E
0. 3

D




In this form the strength of E∥, the numerical size of , indexes
the relative importance between the unimpeded accelerations of
E∥ and the collisional deceleration represented by proton
coulomb drag on a thermal speed electron, we. Thus, very small
 1 implies that coulomb collisional drag has overwhelmed
the force produced by E∥.  1 suggests a more equal
competition, while   1 delineates the domain where the
plasma is nearly collisionless. True thermodynamic equilibrium
has a vanishing strength electric field:  = = E0 . A strong
parallel electric field is one where the dimensionless parallel
field is around 1, namely,  = ( )1 , and collisions are
significantly involved in the balances necessary for zero current
and quasi-neutrality.

Dreicer developed other properties of plasmas in the
presence of parallel electric fields, some specialized for the
spatially uniform laboratory regime. One specialized conclu-
sion concerns what happens in uniform plasma when 
exceeds specific values ( > 0.43 ) that do not apply in the
astrophysical context because of the prominent role of
inhomogeneity and heat flow not considered in Dreicer’s
simpler models. This threshold for uniform lab plasmas
explains the observations seen there of the onset of bulk
runaway, with nearly all electrons slipping at or above the
electron thermal speed through the ions, with friction
decreasing as that slippage continues to grow secularly. At
present it is not known how to define the bulk runaway regime
for inhomogeneous astrophysical plasmas. In this paper
no boundary is identified that corresponds to Dreicer’s
 = 0.43 transition into bulk runaway.

For  < 0.43 Dreicer demonstrated that kinetic runaway
still occurs in uniform plasmas for some speed electrons but
that the total ion drag on all speed electrons could balance the
electric force, allowing a stationary ohmic balance to
characterize the asymptotic state. The Steady Electron Run-
away Model (SERM) suggests the slippage of the thermal core
to be this type of response in the solar wind and that the kinetic
runaway enabled by the size  is the explanation of the
number fraction of the ubiquitously nonthermal electron
velocity distribution function (eVDF) reported in the solar
wind for the past 50 yr. Net current flow is forestalled by return
currents involving the non-core part of the eVDF in much the
same way as determined by Scudder & Olbert (1979).
The electron momentum equation’s leading-order form

suggests (Rossi & Olbert 1970) that  is half the electron
pressure Knudsen number, Pe, viewed as the ratio of mean
free path for the thermal speed electron, λmfp (see
Equation (A1)), divided by the characteristic scale length 
of gradients along the magnetic field given explicitly in
Equation (22). Estimates in astrophysical plasmas of λmfp and
typical spatial gradient scales suggest that the Knudsen number
is commonly ( )1 . Accordingly, the electron momentum
equation implies that the attendant E∥ will be strong,
 ( )1 , and be common in astrophysics (Scudder 1996;
Meyer-Vernet & Issautier 1998; Meyer-Vernet 2007; Scudder
& Karimabdi 2013).
The general idea that finite  promotes a subset of the

electrons into local runaway is still a meaningful insight even
in the astrophysical context. Local runaway is a uniquely
plasma phenomenon for any finite  ; it is made possible by the
coulomb scattering rate being inversely and strongly dependent
on the relative speed of the projectile and target. In the presence
of a parallel electric field a minimum-speed electron always
exists above which the push of E∥ transfers more energy than
the electron loses from coulomb scattering. At and above this
speed increases by E∥ of the kinetic energy continue growing,
locally always exceeding the increasingly smaller collisional
losses; at first it would appear that the electron energy grows
secularly by the energy supplied by E∥. In reality, this secular
behavior (i) generally only occurs for a few electrons and (ii)
persists only until previously neglected processes interdict the
simple picture of a nonradiating particle in a uniform infinite
plasma with a fixed parallel electric field scattering off of
structureless ions of negligible speed.
The need for quasi-neutrality ensures that  = ( )1 is

expected to be omnipresent in astrophysics; thus, the local
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runaway process is always at work (Dreicer 1959, 1960;
Scudder 1996, 2019c), not only for the solar wind but more
generally in astrophysics. By this argument the observed,
ubiquitous, nonthermal electrons of the solar wind should also
be the expected normal behavior for remote astrophysical
plasmas rather than the exception.

2. This Paper

This paper describes a new technique to routinely measure
 at one point in space in the solar wind by asking the
electrons what parallel electric field they sense; the technique’s
high time resolution, compared to that of the pressure gradient
 determinations, arises because the proposed measurement
does not require waiting for the traversals of adequate distances
to infer weak spatial gradients. Here E∥ and  are determined
after performing operations on a specific magnetic-field-aligned
one-dimensional cut of the empirically measured eVDF
recovered using the intermediate Wind 3DP data products for
1995–1998 recently published and tabulated (Salem et al.
2021).

The new technique derives its sensitivity to  by respecting
Dreicerʼs conclusions about the strong speed dependence of
coulomb collisions: for any finite  there is a lowest energy
range of the eVDF ( <E kT3 e* ) where collisions are so
vigorous that the eVDF should be no more complicated than a
drifting, nearly isotropic Maxwellian. The measurement
interrogates the observed eVDF along the magnetic field in
the direction opposite to the heat flux and quantifies where the
leptokurtic eVDF has departed from its drifting mildly
anisotropic Maxwellian form at lower energies. This determi-
nation is discussed in detail in Section 4.

Using this technique, the size of  is surveyed across 4 yr
(1995–1998) using 96 s resolution solar wind data collected at
the forward Lagrangian point by the Wind 3DP experiment
(Lin et al. 1995). Each measurement of ∣ ∣ is the average of
two systematically different determinations of . The
differences of these determinations from the reported average
are used to document the average achieved reproducibility/
precision of the reported measurement for the single 3D eVDF
used. Four years of data suggest that ∣ ∣ has a reproducibility/
precision of better than 10%.

Aware that high reproducibility can result from systematic
error, a second stage of validation is undertaken (Section 9) to
document whether six theoretically motivated correlations
between ∣ ∣ and other plasma observables could be corrobo-
rated using other measurements. These correlations involve
testing quantitative agreements between the expected size of
pressure profile power-law exponents based on E∥ and those (i)
forbidden, (ii) allowed, and (iii) likely for an expanding fluid
like the solar wind; (iv) determining the most likely found
radial power-law exponents for the electron pressure or
temperature for the unstructured spherically symmetric solar
wind (USSSW) of solar wind theory; and (v) the recovery of
the bulk speed dependence of these radial power laws using E∥
that match quantities recently published using pressure profiles
traversed in the wind (Maksimović et al. 2020). The role of
systematic error (vi) in the final test of accuracy is also shown
to be small by contrasting the decay of the experimental
corroboration under an alternate suggestion for the interpreta-
tion of the break point energy scaling (see Figure 21).

These last three tests are especially sensitive to the
certification of the calibration/accuracy of the reported values

of ∣ ∣ , establishing that the Wind-SERM analysis presented
here determines ∣ ∣ and hence ∣ ∣E at the 0.1 nV m−1 level with
a better than 10% accuracy.
Four multiyear correlations provide arguments that the

measured values of E∥ are geophysical and consistent with
their theoretical expectations: (i) size and bulk speed depend-
ence of electron temperature gradients compared to these same
quantities from pressure gradient time series, (ii)  positively
correlated with solar wind speed, (iii) suprathermal spectral
hardness positively correlated with , and (iv) strahl’s almost
exclusive localization within the most stringent closed coulomb
runaway separatrix determined by locally measured .

3. The Nonthermal Solar Wind eVDF

Many different experimental groups have modeled the
velocity space electron probability distribution fe(v) in the
solar wind as a superposition of peaked phase-space sub-
components with their own different densities, characteristic
energies, and peculiar magnetic-field-aligned drift speeds
(Montgomery et al. 1968; Feldman et al. 1975; Rosenbauer
et al. 1977; Ogilvie & Scudder 1978; Pilipp et al. 1987; Larson
et al. 2000; Salem et al. 2003, 2021; Maksimović et al. 2005;
Štverák et al. 2009, 2015; Halekas et al. 2020). A cartoon in
Figure 1 relates the names, phase-space shapes, and relative
locations of these subcomponents with commonly adopted
names core, halo, and strahl.
All subcomponents are observed to possess equal cross-field

drifts, consistent with a magnetized plasma; sketches of the
magnetic-field-aligned cuts of these subcomponents are shown
in the bottom row of the cartoon, with colored traces
superposed on the full parallel trace of the entire eVDF.
The model-independent fe(v) is skewed, nonthermal, and

leptokurtic; its prominent heat flow reflects its skewness, the
departures from a parabolic profile for ( )f vln e  indicate that it is
nonthermal, and its overpopulated suprathermal population
justifies its being leptokurtic. The heat is observed to flow
along the magnetic field direction, usually away from the Sun
and with the same field-aligned bias as the displacement of the

Figure 1. Cartoon representation of solar wind eVDF showing traces of field-
aligned cuts (bottom) and pitch-angle distributions (top) of the thermal core,
the suprathermal halo, and strahl subcomponents. Lower colored traces
indicate the subcomponent’s location in the overall (gray) composite eVDF’s
magnetic-field-aligned profiles. Once the core and halo fits are performed
excluding the heat flux supporting bulge along the magnetic field, the total
eVDF (gray profiles and their extensions in pitch angles) is reduced by the
predictions of the core and halo fits, yielding the residual size and location of
the suggested strahl component. The strahl’s bulge is found along the empirical
heat flux direction determined from the entire model-independent assay of the
eVDF. Courtesy M. Pulupa, http://sprg.ssl.berkeley.edu/~pulupa/.
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strahl subpopulation in the ion’s rest frame as shown in
Figure 1.

The fit parameters of the subcomponent modeling and nearly
model-independent direct numerical integration of the eVDF
separately support the idea that the net charge number flux of
the superposition of these electron subcomponents matches that
observed for the ions. This evidence for the Wind 3DP analysis
has recently been published (Salem et al. 2021) and verified for
this data set by the author. Multiple experimental groups have
suggested that the wind as a whole does not represent a field-
aligned current, despite being permeated by a theoretically
required nonzero parallel electric field (Lemaire &
Scherer1971).

The measured 3D eVDF surface is often modeled by an
optimized superposition of overlapping subcomponents shown
in Figure 1; shape coefficients ck are adjusted to maximize the
agreement of the model with the observed eVDF that is well
sampled in energy and solid angle by Wind 3DP (Lin et al.
1995). After optimizing these coefficients, the value of the
eVDF at any given velocity space location can be obtained as

S( ) ( ) ( )v v cf F , . 4e k k k,obs 

Typically the observed subcomponents for the thermal core
and suprathermal halo are modeled as having even parity in
parallel velocities about their own rest frame and gyrotropic
about b̂. As described below, the strahl assay on Wind is
formed by subtraction of gytropic models and is thus modeled
as gyrotropic; generally the strahl determined in this manner
contains a skewness in its own rest frame (Salem et al. 2021).
The lowest cn

2 for the best choices of the Fk values produces a
skewed, heat-conducting eVDF as the result of best-fit
subcomponent rest frames sliding independently along b̂.

Since the early Vela and Interplanetary Medium Platform
measurements, it has been noted that subcomponent fits of this
type yielded a composite fe(v) that could replicate within errors
the model-independent lower moments (through the heat flux)
of the eVDF determined without subcomponent fitting. After
including the strahl modeling, the more recent and refined
resolution Wind 3DP data set has this property as well (Salem
et al. 2021).

A typical modeling approach forms the sum in Equation (4)
using an anisotropic bi-Maxwellian core for low proper frame
energies, together with an anisotropic κ halo distribution
(Olbert 1968) for suprathermal energies; a phase-space-
localized strahl component is usually identified astride the
heat flux pitch angles of the eVDF (Rosenbauer et al. 1977;
Feldman et al. 1978; Ogilvie & Scudder 1981; Pilipp et al.
1987; Maksimović et al. 2005; Štverák et al. 2009; Halekas
et al. 2020; Salem et al. 2021).

The strahl contribution was identified in Wind 3DF by
finding phase-space locales where the predictions of the
superposed core and halo fits (determined by fits outside the
heat flux pitch angles) were unable to predict the observed
fluxes. Generally these strahl contributions were sought within
the white rectangle in Figure 2.

In the best-fit representations all three components drift
along b̂, but with different speeds in the ion rest frame. The
core drift in the ion frame is ultra-subsonic, the halo subsonic,
and the strahl mildly transonic (see below, however); in all
cases the reference thermal speed is that of the subcomponent.
Except for the strahl, these drifts are difficult to perceive in the
bottom row of cartoon profiles in Figure 1; however, the drifts

are clearly measurable, are coordinated, and suggest that the
entire electron part of the plasma does not drift in the ion rest
frame.
In the solar wind the canonical heat flow direction is along

the magnetic field; based on statistical mechanics, the direction
of b̂E is expected to be aligned with b̂q . The Drude arguments
(1900a, 1900b) based on collisions and Dreicer’s (1960) update
for a plasma and the SERM model (Scudder 2019b) suggest
that the magnetic-field-aligned drift of the thermal electrons (in
the ion rest frame) should be opposite to b̂E , yielding the
interlinked directional expectations:

= = - =
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
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These relations (except those involving E∥) are well documen-
ted by extensive solar wind observations as shown in Salem
et al. (2021) and multiple references cited therein.

3.1. Speed and Pitch-angle Space of the eVDF

The speed–pitch-angle distributions routinely inferred in the
solar wind are suggested by the top row of insets in Figure 1.
The observed extent of these eVDF subcomponents in this
plane is often used in theoretical discussions of their origin. In
the collisionless exospheric limit, boundaries can be deter-
mined in this plane for kinematic access of electrons, as they
can find their way through the electrostatic and magnetic field
variations while remaining quasi-neutral. Because coulomb
collisions are always present, there are also unanticipated
boundaries in this speed–pitch-angle plane with ultimate
rationales more general than the boundaries formulated by
collisionless exospheric arguments.

Figure 2. Theoretical boundaries anticipated for the solar wind eVDF in the
rest frame of the Sun. Exospheric boundaries: cyan circle; total energy E = 0:
orange hyperbolae; exospheric strahl: green subset of hyperbola. Coulomb
collisional structures: (i) red circle (centered at the ion rest frame) of speed
radius, vϖ: this is the outer speed limit of Dreicer’s domain of coulomb
collisional dominance; (ii) blue separatrix,  ( ) , the boundary between
collisionally inward recycled electrons and promoted runaways that have
passed outward across . b̂E and b̂q are generally aligned as shown, while the
electric force on the electron opposes this common direction and is generally
sunward. A complementary section of the observed eVDF along the magnetic
field is shown vs. speed in Figure 3 and magnified in Figure 4, and vs. kinetic
energy in Figure 5.
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Throughout this discussion it should remain clear that the
subcomponent boundaries and extents of the pitch-angle
distributions in the top row of the cartoon in Figure 1 are not
model independent but are inferences where these subcompo-
nent functions dominate the composite, observed eVDF. What
is established by this composite fit is an optimized super-
position of functions that replicated the measured eVDF well.
Such considerations imply that phase-space boundaries or other
signatures have to be experimentally determined from the entire
eVDF as delineated by the observations. Even the best vernier
instrumentation need not have flux variations along any given
needed direction in the three-dimensional velocity space. The
use of a composite fit allows subsequent analysis to obtain the
best synthesis of the eVDF along desired phase-space paths,
making the best use of the overdetermination present in the
composite fit to the entire eVDF while refraining from plate-
like interpolations of the raw inferred eVDF from the corrected
pixel fluxes returned in telemetry.

Before discussing how to measure E∥, we describe in
Figure 2 the locations of various electron phase-space
boundaries alluded to in the exospheric literature and some
caused by collisions. Although this figure is a quantitatively
constructed version of the phase space shown in the top row of
Figure 1, it is still a simplified polar diagram of the speed–
pitch-angle space dependencies of the observed solar wind
electron eVDF.

The figure’s velocity space origin is the Sun’s rest frame;
particles going toward the Sun are moving to the right, toward
the black star in the diagram. In typical situations the observed
solar wind heat and number fluxes flow away from the Sun, to
the left in this figure. In this example the wind is flowing at
400 km s−1.

The exospheric boundaries key on the Sun’s rest frame for
their parallel origins, while the collisional boundaries usually
are centered at the local solar wind’s rest frame (as, e.g., the
center of the red circle at the solar wind velocity).

The cyan circle, centered on the Sun’s rest frame, encloses
the negative total energy trapped particles of exospheric theory,
and some of its occupants have come to be associated with the
thermal core of the routinely observed solar wind eVDF.
Electrons found on the bounding E= 0 cyan boundary in
exospheric theory have a speed vf related to the size of the
exosphericist’s electrical potential at that spatial position given
by - F = f( )e r mvexo

1

2
2, where the zero of the potential is

assumed to be at infinity. A source of confusion is the relation
of any exospheric electrical potentials foreseen and those
electric potentials that occur in a plasma where collisions occur.
Given the approximate character of the exospheric model, these
potentials are probably not identical.

The strahl of collisionless exospheric theory occupies an
unbounded positive total energy (E> 0) regime between the
green extensions of the two orange hyperbolas with superposed
black dashed–dotted lines. Mathematically the strahl of exo-
spheric theory occupies the phase space contoured with cyan
level curves between the extended asymptotes at speeds above
vf associated with E> 0. The reported strahl signatures
generally occur moving away from the Sun on open field lines
and almost always in the direction of the moment heat flux.

In exospheric theory the total E= 0 boundary (cyan circle)
delimits the smallest speed isocontour of the theoretical
exospheric strahl subcomponent. Commonly the strahl is
identified by its rather sharp pitch-angle distribution centered

about the moment heat flux direction of the eVDF. Because of
the difficulty of measuring the electrical potential, the reported
strahl eVDF signatures are seldom, if ever, certified as residing
above the E= 0 boundary.
Theoretically the strahl in exospheric theory carries all the

number flux and heat flow carried by the electrons. The
remainder of the phase space is modeled as occupied by
electrons whose distributions are even functions of their
parallel speed described in the Sun’s rest frame. In exospheric
theory these remainders do not contribute to the odd moments
of the electrons. Since the observed thermal core electrons are
generally viewed as having E< 0 but still observed to have a
flow speed nearly that of the ions, the exospheric neglect of
collisions is surely incomplete. Additionally, there is the
possibility that collisionally moderated heat flow signatures
will also involve field-aligned skewness that could be
misconstrued as exospheric strahl phenomenology (see Figure
4 in Scudder 2019b).
The white shaded rectangle in this figure indicates the

general vicinity of the eVDF where Wind 3DP strahl searches
may have found signatures (but not its precise boundary). The
outline of this inferred strahl search zone will vary based on
the energy dependence of the inferred pitch-angle features
identified (see Figure 1). The generic rectangular region is
called out here as the strahl search zone to emphasize that
signatures identified as strahl may not be an unequivocal
measurement of a surviving exospheric strahl component. This
ambiguity is discussed in more detail below in conjunction
with the strahl parameters determined from the 3DP Wind
observations and must be kept in mind for eVDF features
identified as the strahl in other surveys.
Many authors have suggested that the nonstrahl E> 0

population is populated by various wave–particle effects
spawned by the erosion of the collisionless strahl. In the
context of Figure 2 and the SERM model, promotion by 
outward across the separatrix  ( ) is an alternate but
omnipresent collisional source for halo electrons at pitch
angles outside of the strahl zone of exospheric theory that
needs further consideration. In addition, considerations of
coulomb collisions suggest that all electrons inside of  and
outside of the red circle are in a constant state of interpenetrat-
ing circulation (see Fuchs et al. 1986); this circulation
represents a significant collisional source for the halo not
produced by the above-mentioned wave–particle process.
The finite coulomb collision frequency (ignored by exo-

spheric theory) introduces three other boundaries in Figure 2:
(i) Within the red circle of kinetic energy =v vm v 2e

2
centered on the ion rest frame is the domain where electron–
proton collisions are so strong that Dreicer argued that the
eVDF should at worst be a convecting, nearly isotropic
Maxwellian; Dreicer’s separatrix D is indicated by the open
red dashed wind-sock boundary that encloses a larger volume
in velocity space than the blue separatrix labeled F due to
Fuchs et al. (1986). Dreicer’s minimum speed, vϖ, for
promotion into kinetic runaway is at the red diamond at the
base of the wind sock derived considering only ion drag in
competition with E∥ acceleration. The blue F curve was
derived (Fuchs et al. 1986) considering energy-loss effects in
addition to those considered by Dreicer; in a proton plasma its
minimum runaway speed occurs at the green speed labeled vr
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and is given by Fuchs et al. (1986):
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In this paper we will explore both the Dreicer and Fuchs
et al.  boundaries in our desire to estimate . Since they both
have the same functional scaling on , a consistent choice
devolves on the accuracy of the ultimate E∥ that is implied,
since with Fuchs the inferred E∥ predicts a weaker ambient
electric field than Dreicer’s formulation:

z z

=

=( ) ( )

E E

E E

0.467

, 7

Fuchs Dreicer

Dreicer

 

 

where an arbitrary factor ζ off of Dreicer’s prediction is
introduced to accommodate both choices in Equation (6). (ii)
Both  boundaries are asymmetric in v∥ but cylindrically
symmetric about B; the runaway immune region is open in
Dreicer’s separatrix but closed in the blue curve of the Fuchs
separatrix, F . Both separatrices enclose the ion flow rest
frame, being elongated on the heat flux and strahl’s side of the
origin.

In the presence of any E∥ some electrons will be promoted
from inside to outside these separatrices, energizing them to
local runaway status. When launched in this manner, electrons
locally gain energy secularly from the parallel electric field that
exceeds their losses to collisions. Promotion to runaway status
is most favorable in the direction of the electric force on
electrons, but a finite rate for promotion exists at all pitch
angles, including the strahl’s direction of exospheric theory’s
wedge of pitch angles (Fuchs et al. 1986). Electrons within
both  boundaries are strongly recirculated among themselves
by coulomb collisions, including interacting between electrons
inside the strongly collisional region (Dreicer 1960; Fuchs et al.
1986).

Runaway promotion cannot explicitly occur in the steady
collisionless exospheric theory. Recent clarifications of the
details for achieving formally exospheric winds with high
velocities have shown the importance and necessary role of
collisional access into otherwise inaccessible collisionless
orbits (Zouganelis et al. 2005). In the exospheric modeling
these effects are suggested to be necessary, together with
nonthermal boundary conditions, to achieve quasi-neutral
current-free high-speed winds exceeding 800 km s−1. Thus,
even the collisionless picture has tacit inclusion of collisions
when needed.

4. Measuring v ( )v 

By consensus, the eVDF subcomponent with the highest
ambient plasma phase-space density occurs at the lowest
energies in the solar wind frame (see Figure 1), being hotter
than and distinguishable from secondaries and photoelectrons.
With the strong inverse speed dependence of the coulomb
scattering, the core electron subcomponent, as nearest the
ion bulk velocity, was identified in the SERM model

(Scudder 2019b) as the overdamped population of Dreicer
(1959, 1960), Scudder & Olbert (1979), and Fuchs et al.(1986).
Consistent with Dreicer’s modeling, the solar wind electron

core is only weakly anisotropic and is observed to drift in the
direction of the parallel electric force (away from the heat flux)
and come to a quasi-time stationary antisunward drift in the ion
rest frame. Such a model is the general solution of the Fokker–
Planck equation in the presence of finite  that is not too large.
It is precisely the model Dreicer suggested would occur in his
collisionally overdamped regime. Also consistent is that the
steady core drift in the ion rest frame is observed to be well
below the core’s thermal speed.
The identification of the core subpopulation of the observed

eVDF with Dreicer’s overdamped population is crucial
leverage for the technique presented below for measuring E∥
in the plasma; it involves finding the minimum field-aligned
speed, z vv , at or within the sunward extreme of the red circle
in Figure 2.

5. Ambipolar E from Measured eVDF

We find v (v ) by interrogating the magnetic-field-aligned

cut of the modeled eVDF given by º - >( ) ( · ˆ )v bf v f q 0e  ,
where the direction selected is a ray parallel to the local
magnetic field direction but opposite to the heat flux. In this
way f (v∥) focuses on v∥ 0 particles that move along the
direction of the local parallel electric force on the elec-
trons, -∣ ∣ b̂e E .
For the remainder of this paper we use f (v∥) without the

subscript e and with a scalar argument to denote preferentially
this cut; such a section should pass through vϖ> 0 and is
shown in Figure 3, and it should be contrasted with the full
pitch angle of velocity space shown in Figure 2.
The generally sunward cut of the eVDF along the magnetic

field, f (v∥), has only nonzero model contributions from the
core’s Maxwellian and halo’s kappa subcomponents, since the
strahl term, Fstrahl, is not present (see Figure 1) on the side of
the eVDF opposite the heat flow’s skew. If the strahl
component were present, it would be found in the vicinity of
the green lettering in Figure 3.

Figure 3. Figure shows the full magnetic-field-aligned semilogarithmic slice
f (v) of the ubiquitously observed, nonthermal, and skewed solar wind eVDF,
fe(v), using Equation (9). Dashed–dotted curves reflect the core and halo terms
in Equation (9). When present, the strahl would occur with v < 0 and within the
green lettered area on the composite profile. Three closely located candidate
boundaries vϖ, vI, and v= are identified here and magnified in Figures 4 and 5.
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Accordingly, using the modeled parameters of the composite
fit to the eVDF in Equation (4), the best analytical synthesis of
the observed eVDF along the direction moving toward the Sun
(actually along - ˆ)bq will have the form

> +

º- = - >

( ) ( ) ( )
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c h

e




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With these conventions, if the heat flows away from the Sun, it
would be accompanied by the indicated sunward core drift with
positive parallel speed v=Uc> 0 (in the ion frame) and the
halo drift speed consistently negative Uh< 0.

The profile f (v) for each spectrum (1995–1998) acquired by
Wind 3DP is reconstructed here using the eVDF fit parameters
for the subcomponents consistent with NASA’s Open Data
Policy as interpreted by Max Bernstein, NASA HQ. Statistical
properties of the electrons characterized in this data set have
already been discussed and summarized in tabular form in a
recent publication (Salem et al. 2021).

Thus, the profile used for analysis f (v) along - b̂q will
include the minimum runaway speed vϖ having the form
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where v> 0 and A(κ)= Γ(κ+ 1)/(Γ(κ− 1/2)κ3/2) guarantees
that nh is the number density of the entire κ subcomponent,
despite its non-Maxwellian shape. Since the observations
characterize the drifts of eVDF components relative to the ion
rest frame, the drifts in Equation (9) are actually taken to be

= ∣ ∣U Uc c,fit* and = -∣ ∣U Uh h,fit* provided that the spectrum fit
values satisfy Uc,fitUh,fit< 0 and are thus physical. Since f (v) is
a magnetic-field-aligned cut, the transverse part of the fitted
eVDF has been evaluated at v⊥= 0.

A composite semilogarithmic profile of shape f (v), similar to
that found in the solar wind, has already been shown in
Figure 3. A magnified detail of this f (v) is shown in Figure 4
using the same color codes, line coloring, and labeling
conventions. It details the transitions in the leptokurtic profile
precisely where the halo subcomponent fraction perceptibly
competes with the core contributions for the observed
composite f (v).
The cut of the composite eVDF for the sunward-moving

electrons is shown in red where its curvature is negative and in
blue where it is positive. Three boundaries with decreasing
speed, {v=, vI, vϖ}, are indicated in these figures.
The boundary speed, labeled vI, between regions of opposite

curvature is the point of inflection. The boundary at v=, often
called the hinge point, is where the core and halo subcompo-
nents contribute equally to the total observed phase-space
density. The boundary at vϖ has been computed for this
spectrum and will be identified below with Dreicer’s minimum
speed for runaway, but at present it satisfies one of Dreicer’s
attributes: it is in a region of negative curvature, and
thusvϖ< vI, placing it below the inflection point, vI. The
inflection point for ( )f vln has the implicit geometrical
definition from calculus:

=
( ) ( )d f v

dv

ln
0. 10

v

2

2
I

Since 1968, the solar wind eVDF outside the orbit of
Mercury has been generally observed to have this reproducibly
leptokurtic, nonthermal, and skewed form of Figure 3; it
continues to be seen on Parker Solar Probe.
For context requested by the referee, Figure 5 provides a

third semilogarithmic profile of Equation (9) using electron
kinetic energy of the electrons in the ion rest frame as the
independent variable. As expected from differentiable maps,
this figure also shows the occurrence of a smooth transition
between the dominance of fc and fh and that the superposition
of fc+ fh does not produce a sharp corner at the hinge
energy = .

Figure 4. This figure is a magnification of the sunward-propagating portion of
Figure 3 focusing on the candidate boundaries. The separation of the red,
negative curvature part of f (vϖ) from fc(vϖ) is clearly shown. The color-coding
and boundary candidates are retained across Figures 3–5 discussed together in
the text.

Figure 5. This figure is a variant of Figure 4, requested by the referee, that
magnifies the leptokurtic transition in semilogarithmic format vs. kinetic
energy, showing its slightly different but still smooth appearance. The
corresponding vertically marked kinetic energies of this figure = mv 2x x

2
remain distinct in this format, as do their related speeds that label the
corresponding locations in Figure 3. Color-coding has been preserved across
Figures 3–5.
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The existence of the sharp angular transition in the even
Legendre terms of the eVDF (Scudder 2019b) reflects its
choice of basis functions that are nonoverlapping in velocity
space, rather than the superposition of components, each
defined in all of velocity space used to achieve the Wind 3DP
eVDF modeling seen in Figure 4 or Figure 5. The model in
Scudder (2019b) only pertains to the even part of the eVDF;
transport signatures are expected to produce transitions that
smooth out the apparent corners, giving the entire eVDF a less
angular appearance (see Figure 4 Scudder 2019b).

Large databases made over the past 50 yr (including those
used for examples in this paper) are invariably well modeled
with parameters that validate Equation (9)ʼs skewed leptokurtic
form, including its 3D pitch-angle continuation (Salem et al.
2021) that reduces to the projection given by Equation (9).
Recent Parker Solar Probe results appear to challenge the
pervasiveness of the portions of the sunward halo component
(Halekas et al. 2021), but not the existence of the leptokurtic
thermal-to-nonthermal transition. Neither of the subcomponents
fc(v) and fh(v) is separately completely constrained at all speeds
by the spacecraft measurements; the observations for this f (v)
profile are well constrained by the composite values from the fits
along and nearby the field direction, fe(v), including the specific
ray along b̂. Recovery of unique properties of each subcompo-
nent contributing to the eVDF value is less sure than the fit’s
recovery of the properties of the eVDF surface constrained by all
the corrected raw counts measured by the plasma electrostatic
analyzers. If the composite fit replicates the trend of the speed
dependence of the data well, it suffices to infer the needed
properties exploited below.

6. Maxwellians

A Maxwellian, fMax, has a distinguishing geometrical
property: the second derivative with respect to any Cartesian
component of the velocity, vk, of its logarithm fln Max is
everywhere the same negative constant value set by the
Maxwellian’s temperature:

= - = -
( )

∣ ∣ ( )
d f v

dv w

ln 2
, 11

k e

2
Max

2 2


where we is the rms speed of the Maxwellian associated with its
temperature =k T mw2 e eB

2.
The local mathematical curvature of a planar curve is

proportional to its second derivative and has the same sign.
Curves with negative curvature are concave opening down-
ward; those with positive curvature are concave upward. A
pure 1D Maxwellian implies that = + -( ) ∣ ∣f v a bv vln 2 2 ,
so that its second derivative is always negative, independent of
the value of the speed, v, of the magnetic-field-aligned
Cartesian component where the curvature is evaluated.

Dreicer’s (1959) insight, generalized by Fuchs et al. (1986),
suggested that for any finite E∥ there will exist a candidate
runaway minimum speed vϖ along - b̂E that should occur
within the red negative curvature domain of f (vUc) and thus
between

 
 

<
<

v

v

=

= ( )
U v v v

. 12
c I

c I   

For future simplicity we identify the dimensionless energies q
associated with particles at each candidate speed boundary, vq,

where this dimensionless energy variable = ( )mv kT2q q c
2

generalizes Dreicer’s notation for v .
These inequalities preclude identifying vϖ with v= because

the latter is within the blue, positive second derivative domain
of ( )f vln , which is separated by the inflection point vI from any
red negative second derivative domain for fln at the lowest
energies going toward the Sun. Since the sunward-propagating
parts of all solar wind eVDFs are leptokurtic, they all possess
inflection points, so any candidate runaway boundary transition
from a purely Maxwellian form within  must occur below
v< vI.

7. Experimental Assay of v and ∣ ∣
The defining property in Equation (11) for a Maxwellian

suggests a natural way to process the ith spectrum for the speed
variation of the velocity spread, or dispersion, ( )w i v,eff

2 . With a
generally leptokurtic f (i, v), this dispersion is anticipated to
increase as v grows. The initial low-speed regime has a
constant, nearly Maxwellian negative concavity that with
increasing speed v becomes less negative, approaching zero at
vI. The remainder of this section concerns the ith spectrum; to
simplify notation, the i spectrum index dependence has been
suppressed.
In analogy with Equation (11), the quantity ( )w veff

2 is defined
using the same second derivative operation, but now acting on
the analytical fit characterization (Equation (9)) of the observed
eVDF:



º-

º-
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w v

d f v
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v
w U

w v

1 1

2

ln

, 13c
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2

2

2

eff
2

eff
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where the second form defines the needed dimensionless
second derivative ( )v for the spectrum’s observed ( )f vln . For
the composite function at v=Uc the second derivative is not
precisely that of the core Maxwellian because fh(Uc)≠ 0. With
the above procedure, however,  = -( )U 1c as desired. Details
of the calculation of  and its related functions from the
modeled eVDF may be found in Section A.4.
A dimensionless profile for  º( )E kTc (using Figure 3)

is shown as the lower black curve in Figure 6, rising from −1 at
v=Uc; it eventually becomes 0 at the inflection point v= vI.
To the extent that  differs from −1, departures of f (v) from a
Maxwellian form can be quantified.

 is a useful variant of ; it quantifies the speed-dependent
dispersion relative to its value at v=Uc, giving a speed-
dependent effective scaled temperature, ( )v , along the profile
relative to its value at v=Ub,

 º -( )
( )

( )1
, 14



shown as the top curve in Figure 2. It provides a sensitive
indicator of the modifications to ( )f vln occurring with
increasing admixtures of the halo subcomponent. Eventually
its unphysical use as an effective temperature is clear
when    ¥( )v vI .
A more useful related bounded positive form is

 º +( ) ( ) ( )1 , 15 
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illustrated by the red curve in the middle of Figure 6, rising
above 0, indicated by the red horizontal line. (This use of 
should not be confused with the same symbol’s use for the
coulomb separatrix in Figure 2.) The height of the red curve
above the red horizontal line at each energy of ( ) measures
the increase made in ( ) , as it reduces its negative size en
route to 0 at I , the inflection point’s green vertical line. On the
interval [ ],U Ic   is a positive quantity   ( )0 1 , with a
pattern shown by the red curve in Figure 6, providing a picture
of the departure of the observed f (v) from a Maxwellian form
 = 0 at very low speeds to one strongly modified at v= vI
with  = 1. The blue vertical line is at the computed value of
v for the spectrum in Figure 3 (using Equation (16) and

below), while the green vertical line indicates the energy I
associated with the inflection point of the same spectrum for

fln , where  =( ) 0I ,  =( ) 1I , and  = ¥( )I .
The orange and black dotted curve with red diamonds

superposed shows the running average ( ) of  over all
energies lower than that where the point is plotted. Two flaring
orange curves with black dashes show the variance on this
running mean. This retro-analysis shows that the running mean
of  v( ) has departed from unity by much less than its
variance until  v  . The routinely determined size of v
discussed below with the full 4 yr data set has been shown to
share this property (not shown).

The growing wedge between ( ) and the horizontal axis
 = 0 enclosed by the red curve provides a way to compute the
departures of the curvature of ( )f vln at v from that of ( )f vln at
v=Uc. As can be seen from Figure 6, the departures do not
have an edge identifiable as Dreicer’s boundary minimum
speed runaway boundary; nonetheless, it is possible to say in
what range of energies f (v) deviates strongly from an
underlying Maxwellian form. We know from arguments above
that v must be within the interval [ ],c I  and, by the variation

of  on this interval, must favor the location of stronger ( )E
departures from zero that occur below, but generally near I .
To find a prescription for v , we have considered separately

the weighted averages of (1)  and (2) -1 using ( ) as a
weighting function. The form of the weight ( ) ensures that
the selected range for v emphasizes the first significant
departure of f (v) from a Maxwellian shape on the interval [Uc,
vI]. In this connection it is important to emphasize that the
functional dependence of  is constructed from each new
eVDF as a measure of the deviation of its ( )f vln curvature at v,
( )v , from its curvature at Uc given by ( )Ub .

8. The Recipe

This approach produces two well-defined candidates for the
energy of Dreicer’s boundary given by
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where the common limits of integration are a = Uc and
b = I , respectively. These two estimates have separate biases:
the first toward bigger and the second toward the smaller values
of v . These functional forms are motivated by the desire to
infer  that depends on -1 and v that is linear in  .
Our approach operationally assigns the average v (indi-

cated by the overbar) and half the difference of these estimates
for further use in computations involving  while retaining an
idea of their ambiguity, namely,

v sº º + -v v v v v[ ] ∣ ∣ ( )( ) ( ) ( ) ( )1

2
;

1

2
. 172 1 2 1 2     

The dimensionless electric field and its imprecision have
been inferred separately for each spectrum from

 sº + -v v v v∣ ∣ [ ] ∣ ∣
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( ) ( )
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( ) ( )3

2
1 1 ;

3

2
1 1 .

18

1 2 1 2    

This approach to the computed average energy v and ∣ ∣
considers all the locales where   ¹( )v v 0I without specify-
ing the lower limit of speed integration for performing the
average; this is desirable since such an ab initio specification
would imply knowing what sized departures in curvature of
f (v) in Figure 1 from that of the central region of the thermal
core were or were not important. In the above approach the
fractional errors of v and ∣ ∣ are algebraically equal.

9. Overview of Properties of ∣ ∣ and ∣ ∣E

A broad overview of the derived data products is now
possible. Having clearly defined how ∣ ∣ is defined above, in
the remainder  is used.

9.1. Size Distribution and Organization of  = ∣ ∣ 

The primary experimental observable of this new technique
is the nonnegative dimensionless scalar strength of the parallel
electric field,   0 . As  is the directly observed scalar
quantity of this new method, it does not require a very high
angular precision determination of the total electric field E to
project its parallel component along the magnetic field. The
present method has sidestepped trigonometry; this is essential

Figure 6. The five curves in this figure illustrate the functional dependence of
quantities monitored while obtaining v from 4 yr of data using the Wind 3DP
eVDF using Equation (16). The three curves   , , are pointwise dependent
on the speed/energy being considered for v to be Dreicer’s transition. By
contrast, ( ) is an average over the pointwise variations of  ¢( ) for ¢  .
The fifth curve outlined with black dashes and dots and dispersed blue
diamonds demonstrates the limitations of the partial moment  method as an
alternative to Equation (16).
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given the expected very small size of the wind’s ambipolar
E∥; 0.1 nVm−1, which is 10 million times smaller than 1 au
MHD unipolar |E⊥| fields of -( )2 mV m 1 .

Figure 7 provides an inventory of all the observed
occurrences of  at the forward Lagrangian point during the
interval of 1995–1998 with bulk speeds ranging between 265
and 800 km s−1. Its shape, mode, and mean depend on the
mixture of readings presented by the controlling factors of wind
states diagnosed during the 4 yr interval.

Unequivocally the detected  at 1 au ranged between 0.25
and 3.1. By extension E∥ in the solar wind at 1 au is
demonstrated with these measurements to be strong, since all
exceed the upper threshold of  > 0.05 where a parallel
electric field is known to be weak (see Scudder &
Karimabdi 2013 and references there). The observed range
reported here is consistent with anecdotal observations or
inferences using radial pressure power-law estimates to infer
spatial gradients (Scudder 1996; Issautier et al. 1998;
Scudder 2019a) and arguments from modeling (Lemaire &
Scherer 1971; Landi & Pantelinni 2003; Meyer-Vernet 2007;
Scudder & Karimabdi 2013; Scudder 2019c).

The two-dimensional histogram of Figure 8 helps to give a
clearer picture of the 4 yr statistics of the probability of
occurrence of  ( )U versus ambient wind speed U. This format
will be used several times in this paper: the data are binned in
two dimensions, with the number of observations in the ith row
of the jth column normalized by the peak number of
observations in the jth column. When this normalization has
occurred, the annotation COLN is placed in the lower left
corner. The color code in a given pixel is set by the logarithm
 of the probability of occurrence relative to its column
maximum. The logarithm of the probability  decreases from
yellow according to the color bar, with increasingly darker
colors used for decreasing values. Blue diamonds denote
column averages of the observed row values in the column and
are often connected to suggest their variation with bulk speed
(abscissa). All points of equal normalized probability across
ordinate and abscissa are circumscribed by the cyan contour
at the one e-folding level of -( )eLog10

1 . The coordinates of

the interior of this contour define the 2D space of high relative
probability of occurrence, devoid of the overcounting that
occurs for bins by just counting the number of observations
across the grid.
In this figure the bulk speed is binned along the x-axis and

the common logarithm of  along y. The blue curve
connecting diamonds illustrates a steady but weak exponential
growth of  as the wind speed increases between 275 and
750 km s−1 as anticipated in Figure 1 of Scudder (2019b). The
substantial yellow width D  of this colored 2D histogram, or
equivalently of the cyan contour, suggests that the bulk speed is
not the only predictor of the recorded size of .
However, the cyan contour in Figure 8 shows at the highest

normalized probability across sampled solar wind speeds that
 = ( )1 is routinely large and increasing across a wide range
of wind speeds. This finding is consistent with anecdotal
inferences using power-law radial profile estimates to estimate
spatial gradients (Scudder 1996, 2019a, 2019c; Issautier et al.
1998; Halekas et al. 2020, and Maksimović et al. 2020).
The new measurements presented in Figure 8 are strong

support for the SERM thesis (Scudder 2019b), since such
recurrently strong  contradict the central tenets of various
transport efforts that presume a perturbatively weak  < 0.05
(Scudder 2019c) and attempt to explain transport in that
medium with perturbative modifications to local Maxwellians.
SERM suggested that strong  conditions were the cause of
the puzzling ubiquity of the leptokurtic electron eVDFs
(Scudder 2019b). The generically required and now measured
 ( )1 of the wind insists that its physics cannot be
recovered starting from local Maxwellian eVDFs that have
always been predicated on perturbatively small .

9.2. Polarity/Size Distribution and Organization of E

The signed value of E∥ and its radial projection Er (often
reported from exospheric solutions) are set by definitions, using
the observed nonnegative 3DP scalar , and Equation (5) to
determine the signed vector

º =ˆ ˆ
∣ ∣

∣ ∣ ( )E b bE
q

q
E 19D 






without trigonometry. Thus, E∥ is fully determined after con-
sulting concurrent determinations of the scalars , ED(ne, Te)
together with measured values of the signed parallel

Figure 7. The 4 yr survey of direct measurements of Dreicer’s dimensionless
electric field, , in the solar wind determined using a new technique developed
of this paper demonstrating that  at temporal cadence of 96 s is ubiquitously
strong at 1 au using all 279,807 readings obtained over 4 yr between 1995
and 1998.

Figure 8. Common logarithm of the column-normalized (COLN) probability
of occurrence of the dimensionless  Å∣ ( )∣r U, vs. solar wind speed U(r⊕)
showing positive correlation at 1 au.
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electron heat flux ˆ ·b qe. Trigonometry only enters
when solving for the equivalent radial electrostatic field:

= ˆ · ˆb rE Er  .
The most probable size of E∥ determined by Wind 3DP

observations is of the order of 0.12 nVm−1, as shown in the
histogram of all measurements of |E∥| depicted in Figure 9.

The variation of the normalized probability for observing
|E∥(U)| with Wind solar wind speed, U, is shown in Figure 10;
for uniformity of interpretation this figure has been made of

-∣ ∣ELog nV m10
1

 versus U(km s−1) from observations selected
by Er(U)> 0 in a semilogarithmic 2D histogram format.

Generally |E∥| is a decreasing function of increasing solar
wind speed; a similar pattern is observed (but not shown)
restricting the data to either Er< 0 or Er> 0.

By contrast, the bulk speed dependence of  ( )U shown
above is nearly linear and rising in the semilogarithmic form of
Figure 8, despite their common semilogarithmic formats.

Since the steady-state solar wind is associated with

º >ˆ · ˆ
( )

b r
E

E
0, 20r



the measured sign distributions of E∥ and Er from it are of
supporting interest to the validity of the observations. The
observed signs of E∥ shown in Figure 11 are nearly equally
represented (44%–56%), while the distributions of their radial
projections, Er, are biased more than 3:1 in favor of the positive
sense: 76% versus 24%. Positive Er would correspond, for
example, to the sense expected for the USSSW expectations.
An outward magnetic sector in spherical coordinates has

<ˆ · ˆb r 1; for such conditions E∥< 0 is expected to correspond
to Er> 0, producing a force on electrons that is toward the Sun
along b̂. For an inward sector Er> 0 requires E∥> 0.

Because the method that extracts signed E∥ uses the 3DP
electron heat flow sense along b̂, the preference of Er to be
positive is essentially the same frequency as for the radial
component of q∥ being outward for the radial expansion.
However, as is well known, on the 96 s spectrum resolution

flux tubes can locally be oriented so as to take coronal heat flux
toward the Sun when the radial coordinate of a field line does
not locally grow monotonically with arc length.

9.3. Reliability of Wind E Determinations

For future use the precision and accuracy of the present
method’s determination of parallel electric fields are needed: (i)
the precision of the determination is related to the reproduci-
bility of the numeric value reported; by contrast, (ii) the
accuracy seeks to quantify the calibration of these reproducible
numbers, to show that these numbers are corroborated as the
physical quantity identified by the observer to be the cause of
the values reported.

9.3.1. Precision of  and E

The probability distribution of the fractional spread s ∣ ∣∣ ∣ 

shown in Figure 12 gives a statistical inventory of the
computed reproducibility precision of . Using all observa-
tions across the 4 yr of this study, the histogram shows a

Figure 9. Nearly lognormal distribution of |E∥| in nV m−1 with modal size
approximately 0.12 nV m−1, but ranging between 0.007 and 1.9 nV m−1 on
rare occasions. Such determinations are more than 10 million times weaker
than the unipolar electric field that moves charged particles across field lines
at 1 au.

Figure 10. Bulk speed organization of probability of detection implied by
Wind-SERM observations of -∣ ( )∣( )E ULog nV m 1

 . The superposed blue
connect-the-dot curve joins the 80 vertical column averages. This curve (with
column variances indicated by the cyan flags) shows the bulk speed trend of the
column mean. For reference the cyan contour is the locus of probability e−1

throughout the 2D histogram.

Figure 11. The 4 yr distributions of E∥ (indicated in black) and the radial
component of this parallel electric field Er (in red) segregated by polarity
relative to b̂ and r̂.
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lognormal distribution of the estimated fractional precision of
the , with a mean value of 0.1± 0.03.

It must be emphasized that the values used for Figure 12
come from evaluating two different formulations (given in
Equation (16)) that have slightly different systematic defects.
By construction, their comparison determines a numerical
measure of the reproducibility of  for each 96 s spectrum; it
is not an off-hand, possibly inaccurate, ad hoc surmise of this
attribute.

Exceptional reproducibility could be the result of dominating
systematic error; to guard against this, the complementary tests
for accuracy are needed. Throughout the discussion below the
reproducibility error of this type is carried with each estimate of
∣ ∣ . It is known but not shown that this error is systematically,
but only slightly, smaller in the slow wind rather than in the
faster wind, with the 10% estimate a compromise between
these two extremes, and its variance is an overstatement of the
typical variation of that precision in any given localized speed
domain.

The accuracy and reproducibility of E∥ are essentially that
for , provided that the sense of the measured skewness of the
eVDF is not in question. Using Equation (19) and EDʼs
definition argues that the reproducibility of E∥ is essentially
synonymous with that for  ; the accuracy of E∥ is degraded by
the fractional accuracy of ne, Te,




d d d d
+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎛

⎝

⎞

⎠
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )
E

E

n

n

T

T
. 21e

e

e

e

2 2 2








Given the effort to constrain the 3DP moment evaluations by
cross-strapping them with those of the plasma line documented
in Salem et al. (2003, 2021), the uncertainties of  overpower
those residual fractional errors arising from unpacking the
direct  measurement.

9.3.2. Accuracy of Wind E Determinations

The experimental results of the above program will now be
inventoried for their accuracy in two different ways: (i) assume

that the electric field determinations are independent of other
simultaneous plasma and magnetic field observations, and
contrast the size of the electric fields with estimates
theoretically expected to be similar using simultaneously
measured Wind 3DP moment data properties and the externally
supplied radial gradients needed. An alternate approach for an
accuracy test is to (ii) proceed by reductio ad absurdum:
suppose that the electric field measurements and all colocated
Wind 3DP electron moments are accurate and use the
approximate electron momentum equation to determine the
required electron pressure gradients that fulfill the force
balance. Contrasting these computed bulk-speed-dependent
gradients with recently published estimates of these gradients
from power-law fits to radial pressure profile should allow an
assessment of possible inconsistencies or confirmation of the
accuracy of E∥ determinations reported here.

10. The Program for an Inventory of Wind E Accuracy

Allowing for pressure anisotropy º ^P Pe e e  , the leading-
order terms in the generalized Ohm’s law simplify for a
gyrotropic electron pressure tensor e to give an explicit plasma
recipe that should approximate the dimensionless :

  


l l
º


º

= +
-⎡

⎣⎢
⎤
⎦⎥

∣ ∣ ∣ ∣ ∣ ˆ · · ∣

ˆ · ˆ ( )

b

b r
T

rT

2
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2 Tr 2
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P e

e

e

e
P r

e

e
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e 

















where Equation (A4) has been used and a pressure Knudsen
number Pe introduced. Equation (22) specifies the relevant
length scale  for the sense in which this plasma recipe for 
is synonymous with half the mean free path for coulomb
scattering divided by a scale length along the magnetic field.
The quantities òχ,r may be thought of as the (negative or

inverse of the) local radial power-law exponent of χ at r:

c
= -c ( )d

d r

ln

ln
. 23r

The sign of cr is positive when χ decreases with increasing r
(as with most spherically symmetric wind profiles) and
negative when increasing with increasing r.
Since  is determined by cr

 , e , and Te, it is not a strong
function of the solar wind bulk speed. Apparently the bulk
speed variation of  is controlled by that of λmfp; it in turn is
dominated by the inverse density dependence with only weak
input from Te(U). The tendency for mass conservation at 1 au
then implies that  ( )U should be an increasing function of
bulk speed with a slope that depends on magnetic geometries.
The general behavior of  ( )U in Figure 8 may have this as its
explanation.
After exploiting the definition of , Equation (22) provides

the theoretical expectation, Γ∥ using only plasma variables for
the signed parallel electric field at 1 au:
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Figure 12. Histogram showing the average precision of the Wind determina-
tion of  to be 10% using two separate estimates for each data determination
via Equation (16).
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where º ( ˆ · ˆ)b rE Er  is the required and larger radial
electrostatic field usually reported from exospheric models:
|Er| |E∥|.

Symbolically the first type of corroborations of the accuracy
of Wind parallel electric field determinations involves con-
trasting balances of the form

 
G

∣ ∣
( )E

2

, 25

Pe *

*






 

with independent measurements for each spectrum used on the
two sides of this expression and needed gradients approxi-
mated (*) by necessary but previously known solar wind
observations. Notationally the asterisk superscript reminds the
reader that gradient approximations have been made.

The second approach tests accuracy via the reduction ad
absurdum method: assume that the signed parallel electric field
and the structure of Equation (25) are theoretically complete
for this purpose. Under this assumption, the dominant
(unmeasured) gradients may be computed by enforcing the
equality of the theoretical equations. However, the single-point
gradients computed in this way rely on the accuracy of all
experimental inputs for E∥, Te, and its anisotropy e . The assay
of the total integrity of this accuracy comparison at 1 au rests
on verifying the hypothesis that the inferred cr are consistent
with the recently published information about gradients of
electron thermal properties as a function of solar wind speed
(e.g., Maksimović et al. 2020) and the theoretical work that
explained their occurrence (Meyer-Vernet & Issautier 1998).

Both techniques use empirical inventories of electron
gradients: approach (i) presumes they are adequate for all data
used; method (ii) will be shown to be able to recover
previously reported profiles P re when it operates on a specific
subset of the Wind data characterized by scales known to allow
for USSSW solutions (see Figures 18–20).

En route it is shown that there are other pressure gradients in
the 4 yr Wind data set that are not compatible with the
relatively recent determinations of wind gradients inferred by
fitting power-law profiles to radially accumulated data sets
(e.g., Halekas et al. 2020; Maksimović et al. 2020). Structures
with gradient scales as small as 0.01 au with negative and
positive power-law exponents are documented to occur in the

Wind data set and are outside the set of USSSW solutions
having scales ( )1 au. Short-scale pressure ridges with
negative local radial power-law exponents are also commonly
seen in the Wind data set.
These short-scale pressure gradient structures complicate the

accuracy of Wind data comparisons shown with method (i) (in
Figures 14 and 16 below). Filtering such short-scale structures
out of the data set permits a proper documentation of 
accuracy by showing for a subset of Wind measurements (ii)
that the measured E∥ can determine the best known bulk speed
tabulation of electron pressure and temperature gradients that
are also consistent with published bulk speed dependence of
electron Te gradients determined by least-squares fits to power
laws previously published.
External Gradients as a Function of Bulk Speed: Evaluating

the expanded form of Pe in Equations (22) and (24) requires
empirical knowledge of the coefficients X*, including gradients

Figure 13. Empirical variations of òTe(U) reported from Helios and Ulysses
(crosses) vs. solar wind speed U, with the blue curve showing the fitted
expression in Equation (27). The yellow band embraces essentially all error
bars reported (Maksimović et al. 2020) about the modeled profile.

Figure 14. Superposed epoch 2D histogram of the 4 yr column-normalized
probability for observing  ( )U 2Pe

*
 . Red symbols connected by the cyan

curve join the adjacent column mean values of  ( )U 2Pe
*
 . The cyan contour

curve encloses crown e−1 down from the peak probability across the entire
 ( )U 2Pe
*
 surface. The green diamonds with black diamond inlays show the

superposed epoch variation of  ( )U using Wind 3DP data transferred from the
blue dots in Figure 8. The green contour curve reflects the e-folding area of 
as already shown in Figure 8. Close inspection shows that almost all 
diamonds and their error bars are within the e-folding cyan curve for  2Pe * .

Figure 15. Comparison of 4 yr probabilities of  (blue) and ∣ ∣Pe */2 (red).
While widths are different for reasons discussed in text, the nearly perfect
alignment of the modes suggests that the circumstances for which òX were
adapted dominate the observations reported here, and that the measured  are
consistent with expectations and the size suggested by the rhs of Equation (22).
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of the magnetic field strength that enter when the electrons
become anisotropic.

To establish expectations only for the likely local size of E∥
and , we have estimated Ter from a recent data collection of
the bulk speed variation of ( )UT re shown in Figure 13; each
estimate shown was determined from radial power-law fits to
Te(r) using Helios, Voyager, Ulysses, and Parker Solar Probe

data (Maksimović et al. 2020). These data have been modeled
in this paper by fitting them with the ad hoc form

+ -( ) ( ) ( )U U0.13 0.27 450 km s 26T r
1 1.6

e 

shown by the blue curve in Figure 13; the yellow region in this
figure bounds all reported error bars of these power-law
estimates by fits and is used for comparisons in the reductio ad
absurdum approach for accuracy below, and as a proxy when
needed for quantities like  Pe* of Γ

*

below.
The additional relations needed at 1 au to determine the

expectations for the radial power-law exponents of the Pe

Figure 16. Blue diamonds are U bin averages for |E∥| enclosed by cyan e-
folding contour. Red diamonds are the bin averages for G∣ ∣* enveloped in its
white–red–blue e-folding contour. Blue electric field points are mostly within
the G* crown, but at low speeds they disagree. At low speeds plasma of
Knudsen-based estimate mean values is outside the |E∥| high-probability
crown.

Figure 17. Visualization of the column-normalized probability of occurrence
of inverse pressure gradient exponents ( )UPe,  from which scale lengths

( )U 1 au Pe,   as a function of solar wind speed U may be estimated. Most
frequently occurring estimates at all wind speeds are at or just above

( )U 2P re  , indicated in bright yellow. Yellow line: corresponds to flat
pressure profiles with infinite radial scales, not a location that would typify a
spherically symmetric solar wind sample. Black line: at =( )U 2P re  , a nearly
isothermal spherically symmetric wind at its asymptotic speed would be
identified. All unstructured spherically symmetric solar wind (USSSW) profiles
should possess  <( )U2 4P re  , making < ∣4 P re  and  0P re 

observations inconsistent with USSSW.

Figure 18. Cumulative histograms over all solar wind speeds of occurrence of
Pe exponents seen in Figure 17 after first segregating by sign. Note the very
high preference (in black (all), blue (restricted)) for positive exponents with
mode just above 2. See text for fuller discussion.

Figure 19. Blacked dotted region: expectation for P re from measured power-
law Te profiles collated in Maksimovic et al. (2020); mean trend shown by the
dashed black curve. Blue diamonds with red error bars reflect the size of P re 

using SERM-motivated E∥ developed in this paper. Red diamonds with cyan
error bars reflect the larger total pressure gradients using Equation (38), P re ,
based on the SERM-motivated E∥. The red curve is the expected bulk speed
dependence of the total pressure based on the fit in Figure 20. The green ramp
with black dashes superposed indicates the estimated contribution total
pressure gradient including the residual acceleration of the wind beyond
1 au, implied by the height of the triangular ramp above horizontal at the
bottom of the graph.
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profile have the forms

+
º + --( ) ( ( ) ) ( )U U2 0.001 km s 300 , 27

P r T r nr

nr
1

e e  





where the indicated empirical summary of bulk speed
dependence at 1 au of nr is determined from Helios data
analysis.

As shown in Equation (24), ∣ ∣B r is also required. The Parker
spiral form for the magnetic field determines this bulk-speed-
dependent variation at 1 au:
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The recent Te gradient summaries of Figure 13 model the
observed solar wind variation as a single radial power law
using data intervals of (0.5) au, assuming spherically
symmetric wind profiles with temperature scale lengths of

>1 au 1 auTer  . By the simplicity of the model such fits
suppress structures in the wind that do not occur with scales
comparable to or below the radial scale transited. For the entire
4 yr Wind data set a wide variety of dynamical situations are
encountered so that this idealized expectation is almost
certainly not generally true for every 96 s Wind data point
that only contains information integrated over a length at
400 km s−1 in the plasma 0.00027 au long. This fact shows that
the spatial minutiae in the Wind data set is richer than can
possibly be inventoried by the radial profile fitting approach to
data that typically span 0.5 au or more. The Wind results
include steeper gradients than allowed by pressure gradient fits
to such radially distended profiles (see Figure 17).

11. Accuracy Verification: Type Ia

The observed time variability of

 c( ( ) ( ) ( ) ( ( )) ˆ ( ) · ˆ) ( )b rT t n t t U t t
1

2
, , , , 29Pe e e e * *

produced by over a quarter million observations is allowed to
determine a 2D histogram overview in Figure 14 for
∣ ( )∣U 2Pe
* versus U. The closed cyan contour superposed on

the colored histogram encloses the crown (1 e-folding down) of
this Knudsen probability surface, providing a visual idea of the
locales across bulk speeds of highest column-normalized
probability. The red diamonds joined by a cyan curve connect
the peak probabilities determined in each speed column across
bulk speed columns. Additionally a picture of the crown of the
 ( )U surface (shown in Figure 8) is rescaled to the present
histogram’s vertical scale (Figure 14) and indicated by the tight
green closed contour, surrounding its maximum probability
region. Green (unconnected) diamonds within the crown show
the locus of peak probability for  across U using the same
data for the newly dimensionless electric field.
Although the loci of peaks for ∣ ∣ 2Pe

* and  do not lie
precisely on top of one another, the 4 yr crown of  data does
lie within the crown made describing the high points of the
surface for ∣ ∣ 2Pe

* .
This overlay shows that there are places in the frequently

encountered ∣ ∣ ( )∣U2Pe* that are commensurate with mean
values of  ( )U (except at low speeds, to which we return
below). The red mean values for ∣ ( )∣U 2Pe

* are more closely
near those for  ( )U at higher bulk speeds than lower ones. The
bare minimum conclusion is that ∣ ( )∣U 2Pe* is not precisely
∣ ( )U when inventorying the entire 4 yr solar wind data set
and simultaneously assuming* that every spectrum occurred
with typical solar wind gradients* that suppose USSSW
conditions.
While the 2D histogram for ∣ ( )∣U 2Pe* in Figure 14 has a

much broader vertical spread than  ( )U (see Figure 8), the
reduced histogram in Figure 15 for all estimates of ∣ ∣ 2Pe*
(red) (regardless of U) has a most frequently occurring value
very nearly that for  ( )U shown in blue.
Despite its augmented half-width, the mode of  2Pe

*


is
essentially synonymous with the mode for the blue 
histogram. Given ∣ ∣Pe* ʼs disparate sensitivity to underlying
suspicious assumptions* about gradient scales, the lineup of
their respective modes suggests that these two quantities are
most frequently of similar sizes, but again that they are not so
for all readings.

12. Accuracy Verification: Type Ib

The dimensional form of the generalized Ohm’s law of
Equation (30) relates the signed parallel electric field to
gradients in a way that makes the bulk speed trend of E∥ in
Figure 16 very suggestive:

G

º - - -[ ( ) ] ˆ · ˆ ( )b r

E

1 . 30
kT

er P r e B r,
1e

e 

* 




Given the observed weak bulk speed dependence of Te(U)
and ˆ · ˆb r, the variation of E∥(U) shown in Figure 16 is likely a
direct reflection of the bulk speed organization of the gradients
represented by the òχ∥. As indicated in Figure 13, the expected
radial profile for ( )UP re will show an increase below
400 km s−1, as this comparison suggests would be required to
balance E∥; Γ∥ in Equation (27). While this hint has merit,
this is just part of this evolving puzzle.

Figure 20. Red diamonds: inferred electron total temperature exponents T re
derived from single-point 1 au measurements of E∥ determined in this paper.
The solid blue curve illustrates best model fit functional form (as indicated) for
the bulk speed dependence of these 76 measured single-point gradients. The
parallel red dotted curve illustrates the rms departure of the data points from
this curve. The black dashed curve is the earlier described radial power-law
modeling of Helios and Parker Solar Probe data presented by Maksimović et al.
(2020) in Figure 13; dotted flanking black curves depict the envelope of these
sparse prior characterizations of radially traversed electron temperature profiles.
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The variation of the Wind 3DP determinations for the
columnar means of |E∥(U)| is reproduced in Figure 16 for the
purpose of superposing the 2D histogram’s surface properties
for G* . The connected blue diamonds are the column averages
for the observed |E∥(Er> 0)| with its surrounding cyan crown
of the probability surface of occurrence. The red connected
diamonds reflect the locus of U binned average values of
G ( )U* ; they are enveloped by the red–white–blue (rwb) crown
transferred from Figure 14.

Despite the external gradient approximations needed to form
G ( )U* , five important features of this comparison are notable:

1. The interior of the |E∥(U)| cyan crown is in almost all
places inside the broader G∣ ( )∣U* rwb crown; conversely,
parts of the G* crown and red dots are well below the
|E∥(U)| cyan crown.

2. The 80 binned mean values (blue dots) for |E∥| are almost
entirely within the G∣ ( )∣U* crown.

3. The wider crown of the G∣ ( )∣U* surface and point (1)
suggest that not every contributing data point fulfills the
assumptions made for the evaluation of G* .

4. However, a large number fraction of the electric field–
plasma comparisons that determine the separate crowns
shown would appear to be consistent with the expected
equality motivated by the leading-order terms of the
generalized Ohm’s law, Equation (30); this support is
better at higher rather than lower speeds.

5. Given the strong dependence of G∣ ∣* on the gradients, the
details of overlap of probability crowns appear to suggest
either (i) that the assumed pressure gradients needed to
compute G* were assumed too small at low speeds, and a
little too strong between 500 and 600 km s−1, or (ii) that
conclusions from these comparisons may be compro-
mised if all the data used are not equally compatible with
the gradients cr* assumed prior to making the algebraic
comparison.

The general concern about the appropriateness of the
assumed solar wind gradients for all data collected in the solar
wind will be explored next as the possible cause of the visual
disagreements of Figure 16.

13. Single-radius Determinations of Gradients

Another approach to evaluating the accuracy of  and E∥ is
a form of reductio ad absurdum: assume that the approximate
generalized Ohm’s law is correct, and use it to infer the
required electron 1 au pressure and temperature gradients.
Comparisons of these estimates with the reported bulk speed
dependence of temperature gradients determined by single
power-law fits may produce more secure confirmation or
contradiction of the accuracy of the single-point gradients from
the Wind 3DP  determinations.

It should be self-evident that the logic of this approach to
verification presumes that the data sets used are characterizing,
or are screened to examine, the same class of plasmas and
diagnosing them with measurement approaches with compar-
able spatial and temporal Nyquist conditions. More precisely,
different techniques when examined carefully have different
limitations, even though they both are said to be characterizing
solar wind plasma properties at 1 au!

Since Wind 3DP data at the forward Lagrangian point do not
determine radial power-law gradients by collecting data while

the spacecraft moves in radius, this issue of comparability is of
concern. This is not trivially redressed since the literature’s
method for gradients from fits to radial power laws uses data
collected over time and space, while the present paper’s
technique determines gradients from a single snapshot in time
and at a single location in space using a map of the three-
dimensional eVDF. Alternately, it is not clear that using any
and all data in the solar wind with the Wind 3DP approach are
equally able to provide information about the long-wavelength
biased profiles that would be determined by fitting a single
power law to radially separated data. The above considerations
could be consolidated into the concept of the aliasing
characteristics of the two techniques. As shown below,
ensuring this comparability leads to the desired corroboration,
but not before.
Still more complicated is the sea of pressure ridge structures

in the solar wind; they have a wide variety of scales and signs
of local power-law exponents. How does the usual power-law
gradient fitting process neglect, weight, ignore, or otherwise
digest conflicting gradient signs in the data it is asked to fit?
How does data binning and a profile’s radial extent shape the
reported power-law exponent? If the sea of structured pressure
signals are organized, they are not well assumed to be Gaussian
random noise, as presumed in the usual least-squares
procedures. In turn, this implies that the returned fit is not the
beneficiary of Gauss’s and Legendre’s ingenuity that insulates
the user from truly random Gaussian noise. What do such fits
mean, and what systematic effects do they retain in their
numerical values?

13.1. Overview of All Data 1995–1998

Every Wind eVDF algebraically determines a local power-
law exponent using Equation (30):

+ - -( ) ( )1 . 31P
erE

kT e Br
1

e r
r

e
,  *



Using all 4 yr of these Wind estimates allows a sweeping view
in Figure 17 of the column-normalized probability of
occurrence, size, and sign(!) of pressure exponents of the
electron pressure ridges (of the parallel eigenvalue of the
pressure tensor) traversed as the sampled wind speed changes.
It is important to reemphasize that these column-normalized
probabilities are insulated from the unavoidable nonuniformity
of Wind sampling with solar wind speed.
In Figure 17 the inferred sizes of the electron parallel

pressure exponents span the interval of  -10 10;P re  the
horizontal axis is solar wind speed. The yellow horizontal thin
line corresponds to isobaric plasmas, with zero exponent, a
regime inconsistent with a spherically symmetric wind solution.
The black horizontal line at = 2P re  corresponds to a
spherically symmetric pressure profile that has an isothermal
temperature profile—a plasma with infinite scale for temper-
ature variation but finite scale for pressure variation. All larger
positive values of > 2Pe  correspond to outward-decreasing,
ever-steeper temperature profiles than the flat isothermal
temperature profile and ones compatible with near-inverse
square density profiles. They have radial pressure scale lengths
in au of ( )L au 1 P re

  .
Considering the range of USSSW solutions available, the

electron temperature profiles near 1 au might have inverse
exponents between 0 and 1.33, so that pressure profiles for this
type of modeled wind would be found between or near the
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interval of exponents in the range  2 3.33P re
  . If the wind

at 1 au is still accelerating, the upper limit on the pressure
exponent might be as high as 4.0.

Considerable information about this 4 yr data set may be
gleaned from the colored histogram of probability of
occurrence of over a quarter million point determinations of
local electron pressure power-law exponents in Figure 17:

1. Over 4 yr there is virtually no inferred column-normal-
ized probability (see Figure 18 as well) for finding these
pressure exponents in a very dark band centered on 0
(especially in the most heavily mapped bulk speed states
U< 600 of this data set). Since Equation (31) algebrai-
cally permits such near-zero exponents, the measured E∥
is not too small by factors of 2 by this consideration
alone. This is physically consistent with the solar wind
not ever being isobaric.

2. Taken at face value, there is measurable probability at
negative as well as positive exponents ( )UP re  in all the
different bulk speed columns surveyed. Given (1), this
result cannot be explained by an incorrect zero-point on
the scale that determines E∥. This time-averaged prob-
ability map of the solar wind generally contains sharp
pressure ridges that are locally both decreasing and
increasing with increasing radius. The probabilistic
nature of this picture does not require simultaneous
positive and negative exponent readings in the same bulk
speed column. Minimally it requires that such different
sensed gradients in the same flow speeds be recorded at
different times.

3. There is an asymmetric ordinate pattern in Figure 17: at
all speeds the maximum column-normalized (yellow)
probability (across both signs of exponent) decidedly
favors. positive > 1Pe  . As resolved below in Figure 18,
this peak is very sharp with a most probable value just
above 2, with over a quarter of a million points in the
histogram. This finding is consistent with very frequent,
but not exclusive, Wind-SERM detection of pressure
scales of the size usually modeled as USSSW, character-
ized by a generally falling pressure and temperature with
increasing radius, corresponding to positive exponents

2P re
  as seen in Figure 17. Thus, the Wind-SERM 
measurements outlined in this paper have identified those
eVDF spectra that can infer pressure gradients consistent
with being USSSW!

4. In the lower speeds the finite probabilities of the orange–
red–green colored regions in Figure 17 extend to
exponents with magnitudes beyond the colored histo-
gram’s ordinate bound; even at these bounds of this figure
the pressure gradient scales are more than 5 times steeper
than that implied by the minimum (isothermal) exponent
of 2 for spherically symmetric isothermal wind (see
Figure 18 for even shorter scales). This enhanced width
of probability at shorter scales quickly narrows as the
column’s wind speed increases, reaching a lower and
fairly steady breadth above 450 km s−1. This morphology
is consistent with the short scales being preferentially
detected in corotational pressure ridges, predominantly
possible at 1 au below the wind’s corotational speed at
Earth U< 450 km s−1.

5. The probability for ∣ ∣P re
  for these short-scale gradients of

both signs appears to cascade toward longer scales
(smaller-magnitude exponents) as U increases, consistent

with the expected absence of corotational signatures
above 450 km s−1 at 1 au.

6. The dominant scale for negative P re
  is 2–3 times shorter

than the dominant scale for spherical-wind-like solutions,
having exponents of −4 to −10.

13.2. Occurrence of < 0Pe  and > 0Pe 

Another view of these findings is produced by making
separate cumulative histograms of the occurrence of scales first
sorted by exponent signs and then binned logarithmically in
∣ ∣P re  . These results are shown in Figure 18 by three superposed
histograms: (i) black: all positive exponents; (ii) red: all
negative exponents; and (iii) blue: the difference of all
positive–negative histograms at the same scaled pressure
exponents.
These histograms show how well these determinations: (i)

Prefer values in excess of 2–3, where the blue curve for all red-
black exponents has its sharpest most probable value; the peak
of the negative gradient events definitely occurs at sharper
scales than those with exponent 2 (more like 6–7), corresp-
onding to parallel scale lengths 3–3.5 times shorter (;0.1 au)
than the pressure gradient scales of more typical spherical wind
models, (ii) Have the strongest gradients of both signs (red and
black histograms) with occurrence frequencies well matched
above ∣ ∣ 70Pe  , a regime (;0.01 au), well above the range
shown in Figure 17; these structures would have scales nearing
the correlation length in the interplanetary magnetic field at
1 au (Burlaga 1995), and (iii) Show that the solar wind sampled
is a system dominated by scales more sharply centered about
+2 than the broader original black curve of all positive
exponent readings; this suggestion of more frequent USSSW
structures within all structures does not exclude the occurrence
of not USSSW morphology.
Treating all the quantities across columns of the 2D

histogram in Figure 18 produces a cumulative picture of the
probability in time of events, seeming to suggest that the cause
of sharp short scales (large ∣ ∣Pe  ) is superposed on the more
frequent dominant USSSW occurrence of longer scales with
smaller < <1 6Pe  . This is consistent with the solar wind
profiles that are generally expected to be present between
pressure exponents between 2–4, contributing their dominant
scales to the mix in the 96 s data. However, this general
expectation is observed intermingled with other structures
possessing shorter scales.
Clearly, fitting a single exponent power law to Helios data

collected over 0.29 au< r< 1 au cannot infer these short scales
even when traversed. Conversely, the Wind-SERM approach
that balances E∥ on a 96 s timescale is strongly influenced when
it traverses the stronger electric fields associated with the
shorter scales in any data series it processes. This reality makes
the Wind-SERM electric field measurements as a set open to
different interpretations than possible when fitting long time
series to a single radial power law—even when both analyses
sample the same plasma volume. Among these differences will
be the range of parallel electric field strengths reported that will
be larger for the Wind-SERM methodology than reported by
profiles from gradient fit estimates.

14. Reductio ad Absurdum for SERM’s EP Determinations

The hypothesis that short-scale strong E∥ detection would
interfere with all the E∥ data being corroborated by estimates
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via G* or  2Pe
*


in Figures 14 and 16 suggests that culling all
data based on their single-point value estimates of P re  (using
the blue high-probability region of Figure 18) would produce a
fairer comparison with the (USSSW) biases of published radial
power-law fits to the electron temperature in Figure 13. The
likelihood for improvement of correspondence is high for two
reasons: (i) Power-law fits to radial profiles of Te(r, t) tend to be
made to binned data in r for data that span a significant range
(;0.5 au) in rLog to obtain an acceptably ranked power-law fit.
Single power-law modeling is incapable of simultaneously
inferring scales short compared to the interval of space
traversed; furthermore, it is not assured of properly averaging
out the signals that shorter scale data contribute to the fit. (ii)
By editing the higher-cadence Wind data to only retain those
single-point gradient observations with pressure exponents
within the peak of the blue histogram in Figure 18, there is still
a fairly wide range of exponents allowed in the bulk speed
windowed histogram, while still having a high level of
overdetermination at narrow, well-defined solar wind speed
buckets.

The blue histogram in Figure 18 suggests choosing a
restricted exponent range like < <1.5 10Pe  for admitting 96
s data to obtain wind profile gradient estimates. This filtering
approach reduces the size of the 4 yr data set by only accepting
points generally more compatible with USSSW concepts than
the unedited 4 yr data set. Proceeding with these restricted data
determines overdetermined average values for á ñ( )UPe  in
narrow Wind speed buckets that cover the observed range of
wind speeds.

15. SERM E Determines Structureless Solar Wind
Gradients

The form of Equation (30) is equivalent to a simple linear
equation for the ith 96 s eVDF involving their logarithms:

= +
= + -
=
=
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as algebraically equivalent to
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The form of Equation (32) is appropriate for the Gauss–
Legendre fitting/averaging method since Er and Te∥ have both
been shown to be log normally distributed.

To improve the determination of a suitable best natural log of
the positive gradient for the speed bin, ( )M Ui j , within a jth
speed interval aboutUj, consider it being overdetermined by the
Nj spectra, ij= {1, KNj}, whose bulk speeds are in the j’th
speed window and admissible from the blue difference
histogram of Figure 18. We desire the best least-squares fit
solution ( )M Uj j for

= +( ) ( )M ULog Log , 34i j j ij j 

where the indices i of the jth bulk speed buckets are denoted by
ij= {1, KNj}. The optimal least-squares answer is

= á ñ( ) ( )U exp , 35P r j
M

e
i ij 

where á ñ... ij denotes the mean value over the Nj i entries ij in the
jth speed interval,
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which is the natural logarithm of the geometric mean of the
single-point estimates in the jth speed bucket. This is the same
result as averaging the initial formula in Equation (32),
assuming that the deviations from the logarithms are Gaussian.
The overdeterminancy of these conditions involves Nj; 2000
(except at the highest speeds) for a nearly constant bulk speed
window, providing unusual clarity of possible bulk speed
dependence and strong error reduction. This situation should be
contrasted with radial pressure profile fitting that must also
deduce, argue, and defend that the observed data points
acquired at different radial positions are nearly on the same
streamline labeled by U(1 au) at 1 au, where the observations
were not acquired (see Maksimović et al. 2020 for discussion
of this style of organization).
The fit uncertainty of ( )UP r je

  is indicated by the red flags in
Figure 19. These values were determined by
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whereD ij andD ij are the changes caused by modifying E
ij


and Te ij by their respective precisions and Gx is the xth of 100
numbers drawn from independent unit variance Gaussian
random generators.
To obtain total pressure or total temperature gradients from

P re  , the relationship (see Equation (A15))

b
= -
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between P re  and P re is required, where β, defined as

b =  ´ - ( )d

dU
8.8 1.2 10

s

km
, 39e 4 

was determined by noting that the observed electron
anisotropy varies approximately linearly with the bulk speed
(Equation (A17)) and enters the analysis when evaluating

b ( )d

dr

dU

dr
. 40e 

The results in 76 speed intervals from the generalized Ohm’s
law yield estimates for ( )UP re

  (blue diamonds) are shown in
Figure 19, together with their related gradient P re determined
from Equation (38).
The black dotted curves that flank a black dashed curve

indicate the expected variation of the electron total pressure
gradient based on empirical Te power-law fits (illustrated in
Figure 13) at different speeds in the solar wind (Maksimović
et al. 2020). Although the Figure 13 empirical data determined

T re directly, the curved black dotted region in Figure 19 is
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deformed to account for spherically symmetric implied
pressure variations according to

º +
= + - -
= + -
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The upper locus from the Wind-SERM approach of this
paper for the full electron pressure gradient is fully within the
deformed expectation (two black dotted guard band curves)
based on Maksimović et al. (2020) empirical collections of
power-law fits for T re . The top row of Wind-SERM data
diamonds represents minor corrections to the lower Wind-
SERM trace directly obtained by using E∥ and the generalized
Ohm’s law.

By contrast, Maksimovic’s suggested temperature gradients
and simple inverse squared corrected pressure gradients were
also corrected for the residual acceleration effects that make the
density gradient at higher speeds fall off faster than inverse
square. The green ramp (with black dashes) in Figure 19 shows
this sizable contribution to the indirectly inferred pressure
gradients implied by our Helios estimates of this acceleration
effect at high speeds.

The Wind-SERM electric field determination of the pressure
gradients does not differentiate between temperature or density
variations as to their cause and at the present level of
approximation does not require any modification for the
presence or absence of the wind’s acceleration; the parallel
electric field reflects whatever acceleration has occurred that
modifies the steady density profile.

Despite this, the Wind-SERM electric field estimates of
( )UP re are clearly compatible with the deformed extensions of

the Maksimovic profiles that needed the acceleration modifica-
tion. The Wind-SERM Maksimović et al. (2020) comparison
clearly oscillates about the mean prediction (black dashed
curve) implied by the fitted bulk speed dependence
(Equation (13)) of the electron power-law data of Maksimović
et al. (2020), while indirectly authenticating the model of the
acceleration incorporated from unpublished Helios analysis.

Unfolding the acceleration and density gradient from the
Wind-SERM electric field determination of the pressure
gradient, P re , in Figure 19, it is now possible to show in
Figure 20 the implied, measured bulk speed dependence of
solar wind electron temperature gradient, ( )UT re . This
procedure allows the ultimate comparison with the directly
comparable (dashed black curve with dotted black curve guard
bands) profile most recently assembled by Maksimović et al.
(2020) from radial power-law fits of ( )T r U,e along surmised
streamlines. This favorable contrast is the most incisive test of
accuracy of the present determinations of E∥ in this paper. By
this comparison the Wind-SERM E∥ determinations (with
ζ= 1) are shown to be at, if not better than, the present state of
the art by other means.

The vernier SERM assays in Figure 20 of the bulk speed
dependence of T re derived from the Wind 3DP data are shown
with the red dots, fitted by the best blue curve of the model
form indicated. The dispersion of the SERM data points about
the blue curve determines the±width of the framing red
dashed curves.

Several points are clear: (1) the SERM estimates for the bulk
speed dependence of Ter are tightly organized; but most
importantly, (2) this pattern winds through the interior of
Maksimovic’s coarsely determined radial gradients, but is

totally inside its error bounds (black dotted curve), although (3)
suggesting a very cohesive and smoother functional depend-
ence on bulk speed. The error flags (4) on the SERM Te profile
D Ter are set to be three times the error of the mean.
Numerically these errors are those determined for the pressure
gradient exponents. These errors represent electron power-law
exponent fractional errors nearly the same as the computed
spectrum-dependent errors in the input E∥. Exceptions occur at
extreme high wind speeds, where the electron temperature
becomes very cold and where data overdetermination weakens.
The SERM estimates (5) have been made with a vernier bulk
speed resolution finer than those painstakingly collated by
Maksimović et al. (2020).
The bulk-speed-dependent SERM estimates of T re reveal a

two-zone behavior: with power-law exponents decreasing
linearly above 265 km s−1, and consistent with being a constant
above 530 km s−1. For the model hyperbolic form indicated on
the figure fitted to the data (blue curve), the high-speed
exponent is centered on 0.27± 0.04, perhaps accidentally close
to the well-known Spitzer-conductivity-dominated two-fluid
wind solution with exponent 2/7= 0.285. The normalized
c =n 0.452 suggests that the model form with its input errors
and the data are operationally interchangeable.
Insofar as verifying the accuracy of SERM’S electric field,

the comparison in Figure 20 shows that using SERM’s stated
precision as its fit error accuracy yields results more coherent
and superior to those reported from the corroborating
Maksimovic inventory—but nonetheless consistent with its
relatively wide tolerances of expectation based on radial power-
law fits. Accordingly, the accuracy of the present method for
determining E∥ and  meets and exceeds the expectations of
those parallel radial power-law estimates considered to be the
prior zenith of this experimental art.
Together with their error bars, the bulk speed dependence

inferred for ( )UT re
 is totally consistent with all known radial

Te(r, U) profiles for electrons provided that this blue model
profile is averaged over the solar wind streamline labeled
speeds used in prior studies; generally this information is
poorly documented or unknown. These quantitative tests, as
well as the global patterns shown in Figure 17 of occurrence
and avoidance of different-sized exponents, are strong support
that the E∥ values reported here are geophysical and have the
10% precision and calibration accuracy suggested.

16. Accuracy Assessment of Wind-SERM E , 

The accuracy of the present approach can be solidified by the
following study that was made assuming that the Wind-SERM
parallel electric fields were imprecise by a multiplicative factor
ζ. This approach allows exploring the relevance of the Fuchs
et al. (1986) possibility that v inferred in this paper for each
Wind spectra should have been associated with a different
theoretical fiducial  (Equation (8) in Fuchs et al. 1986) than
the one Dreicer proposed as summarized in Appendix A.3.
Assuming that v and ED are fixed by the recipe above for

the ith eVDF observation, this retrospective reduces to
exploring the acceptability in the data corroboration that for
all eVDF we suppose there exists a factor ζ that is more
suitable than the value of ζ = 1, which is Dreicer’s recipe, i.e.,

 
z z

z
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v
( )

( )

( )
( )

E E

0.1 2.1. 42

i
E i

i,
3 DreicerD

 

19

The Astrophysical Journal, 934:151 (28pp), 2022 August 1 Scudder



The ζ range searched is motivated in Appendix A.3 and
envelops both the Fuchs (0.467) and Dreicer (1) hypotheses.

The Wind-SERM temperature gradient exponent calcula-
tions were repeated for 200 equi-spaced values of ζj to
redetermine the 80 bulk speed bucket average values

zá ñ( )U ,Te jr . For each value of ζj the bulk speed variation of

the implied electron temperature exponents z( )U ,Te r k j,
SERM was

compared with the bulk speed functional variation ( )UTe r k,
Mak

implied by Equation (26) for temperature gradient exponents
assembled by Maksimović et al. (2020). A χ2 measure of the
form

c z = Sn
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was used to explore the sensitivity of this external corrobora-
tion to the value of ζj assumed. In Equation (43) Δ= 0.16 is
the full half-width of the ribbon (see Figure 13, which
encompassed all errors reported in the Maksimović et al.
2020) data set. The factor Δ/2 in the χ2 is an attempt to
estimate the relevant average of errors given that Δ

encompasses all 1σ error bars. This is complicated by the
inclusion of a range of solar wind speeds in some of the data
points summarized in the set.

The variation c zn ( )2 in Figure 21 shows a very strong
preference for ζ near unity and an emphatic rejection of the
Fuchs et al. (1986) hypothesis of ζ= 0.467 that might be
surmised as possibly relevant to our consideration (see
Appendix A.3).

With 75 degrees of freedom there is virtually no expectation
for χ2 to be 6.5 as is required to consider the Fuchs
interpretation further for this measurement approach to
determining E∥.

A possible point of confusion is that although the separatrix
speed vr in Fuchs et al. (1986, Figure 2) is numerically lower
than Dreicer’s vϖ (and would ab initio require a larger  to
produce), the test being performed by varying ζ is to decide
which formula (Dreicer’s or Fuchs’s) corresponds properly to

the already fixed, operationally determined v and delineated
ED for a given spectrum that do not change as ζ varies in these
trials. From this vantage point the requisite size of E∥(ζj) reverts
to asking alternate recipes in the same plasma conditions to
predict the same value for v . With this reframing of the
algebra,
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implies that in order to be consistent with v the Fuchs recipe
needs a weaker electric field than the Dreicer relation.
Perhaps the strongest experimental statement that can be

made is that the operational method that determines v requires
the Dreicer relation to relate its size to  to enjoy strong
external accuracy corroboration with the Maksimović et al.
(2020) inventory as constrained by over a quarter of a million
Wind-SERM readings. From this point of view the ζ= 1
minimum in Figure 21 is expected as a matter of logical
consistency between how v was operationally found and how
it should be interpreted.
Nonetheless, the final arbiter of this apparent ambiguity

between Fuchs’s vr and Dreicer’s vϖ is that the logically
consistent path is the one that enjoys external accuracy
corroboration when comparing with the completely indepen-
dent methodology used by Maksimović et al. (2020). (This
point of view emerged from a helpful discussion with Vadim
Roytersheyn and Patrick Killian.)
In this connection it is worthwhile to consider that the

estimates of ∣ ∣E in this paper are the average of two slightly
different estimates that are statistically ±10% removed from
the ζ= 1 values used in most of the figures in this paper. The
minimum in Figure 21 at ζ= 1.1 might be interpreted to imply
that the higher estimate for ∣ ∣ within the error bar is slightly
more appropriate for electric field magnitudes than the average,
and certainly more appropriate than the lower estimate. If true,
this corresponds to preferring the average denoted above as ( )2
rather than the impartial average as was done in the analysis
section. Since the preference cannot be exhibited without
checking for external corroboration done here, this retro-
spective insight can be used going forward when archiving the
measured electric field strengths and those for ∣ ∣ . The size of
this possible systematic error for E∥ is proportional to

z-∣ ∣1 min ; this accuracy error is thus within the already
tabulated reproducibility percentage error for ∣ ∣ precision
shown in Figure 12. For archival purposes this study suggests
vernier modifications of the best Wind-SERM electric field
estimates according to

 
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The variation of all known solar wind radial ( )UTer profiles
for electrons is compatible with the vernier profiles shown in
Figure 21. The χ2 test of Figure 21 and other quantitative tests,
as well as the global patterns of occurrence and avoidance of
different-sized exponents shown in Figure 17, are all strong
support that the E∥ values reported here are physical with the
10% precision and accuracy claimed.

Figure 21. Curve: variation of χ2(ζ) when comparing Wind-SERM z( )Ter
with those assembled by Maksimović et al. (2020). Here ζ is the assumed
magnification of the computed values for ∣ ∣ and thus E∥ when v remained as
operationally implemented above. Note the clear minimum cn

2 within 10% of
Dreicer’s ζ = 1 and the much higher Fuchs’s c z = =n ( )0.467 6.52 that
supposed that all Wind-SERM electric fields were 47% smaller than in the
histograms in this paper.
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17. Suprathermal Hardness and 
Power laws in the eVDF are routinely presumed to be

present for remote plasma radio and X-ray emission scenarios.
Phenomena involving power-law forms usually assume that
these nonthermal features are by-products of E∥ accelerations
that deform the Maxwellian shape. Dreicer realized more than
60 yr ago that any E∥ promotes some electrons out of the
thermal population, forming local runaways that can be the
origins of nonthermal velocity distribution functions. As the
size of  increases, the fraction of electrons promoted by this
process is expected to grow rapidly (Dreicer 1959, 1960; Fuchs
et al. 1986; Scudder 1996). The general argument that quasi-
neutrality requires  ( )1 in astrophysical plasmas and the
broad arguments in Scudder (2019b) suggest looking for a
correlation in the Wind data between local suprathermal
spectral hardness and the collocated estimate of  available in
this paper.

The Wind 3DP solar wind eVDF at suprathermal energies is
routinely fit by a fixed power law that allows for anisotropic
most probable speeds (Salem et al. 2021). The κ parameter is
determined as a least-squares fit parameter at the high energies
of the halo subcomponent considering all pitch angles. In fact,
the recently proposed SERM (Scudder 2019b) suggested that
the cause for the nonthermal leptokurtic eVDF at 1 au is a
steady variant of the physics used to explain laboratory
runaway phenomena (Dreicer 1959; Fuchs et al. 1986); it
naturally predicts the hardening of the suprathermal fraction
with increasing ∣ ∣ .

A spectral hardness index, , of the form

kµ --( ) ( )0.1 46h
1

has been used. Operationally with typical eVDF resolution it is
very difficult to distinguish eVDFs with best fit κ values bigger
than 10 from being a Maxwellian. This sets the constant −0.1
in the formula to compute. The form computes an increasing
hardness  for decreasing κ< 10. In the 4 yr data set fit κ
ranges between 2.5< κ< 10, with typical values in the 5–6
range. Since the Wind 3DP data processing predated the
techniques of this paper being able to measure , there is no
experimental interdependence of the power-law exponent or
size of .

The 2D spectrogram summary of ( )  versus  for
279,807 spectra is shown in Figure 22; by its column
normalization it removes the oversampling of typical condi-
tions and provides the probability for detection as a function of
ordinate and abscissa pair. For easy reference the locations of
different-sized κ values are indicated by cyan numerals along
horizontal dashed black lines. The highest hardness values
recorded begin to challenge the domain where a formal
nonrelativistic kappa function has divergent moments and thus
needs to be generalized for relativistic effects.

The blue diamond tagged trend of the column averages of
in the spectrogram does show that the Wind 3DP recorded
electron suprathermal spectral hardness does increase with
increasing , as expected. When kappa approaches 3.5 in the
Wind data, the dimensionless parallel electric field nears its
largest observed values,   2.5 : the larger readings of  do
accompany the harder spectral mean values of ( )  ,
providing further evidence that the wind  data are physically
corroborated in an expected way.

18. Strahl Knows about 
Evidence is now presented to show that the observed strahl

feature of the solar wind eVDF is cognizant of, if not strongly
organized by, the size of . Located in just the right energy
range, the strahl plays an important role in the determination of
the heat flux that is thought to be so important in sustaining the
solar wind expansion. By its nature  indexes the relative
importance of coulomb drag versus E∥ accelerations in the
plasma; until very recent modeling the strahl subcomponent has
been viewed as a feature of the collisionless exospheric model
using the method of characteristics, essentially treating the
plasma as if  1  , if not infinite.
Observationally the observed strahl features on the eVDF are

found along the magnetically aligned heat flux direction, but
180° away from those opposed parallel speeds of the eVDF
where the size of  has been gleaned (see Figures 3, 2, 23).
The strahl data inventories in the Wind 3DP analysis predate

and have no knowledge of the subsequent determinations of 
presented in this paper. Despite this independence, strong
quantitative organization of strahl properties and velocity space
extent at the 90% level across 4 yr of data are demonstrated.
This is shown by comparing the strahl’s phase-space location
with those of the interior of the runaway separatrix  ( )vF
determined by the  measured for the same eVDF. Unlike the
canonical model of the strahl as a collisionless vestige of
coronal boundary conditions, these observations suggest that
even at 1 au there is strong coulomb collisional modification, if
not control, of the strahl. It is altogether possible that the
observed strahl subcomponent is just the odd Legendre
skewness residual of plasmas with large ( )1 Knudsen
numbers.

18.1. Separatrix Boundary  ( )
The coulomb boundaries determined by  from Figure 2 are

extracted here to compare with observed strahl properties
reported from Wind 3DP observations; these are synthesized
from the strahl’s first four moments of density, ns, drift in the
ion frame, Uds, and gyrotropic pressures Ps∥, Pe⊥. The black
ellipse is a bi-Maxwellian shaped phase-space density that

Figure 22. Two-dimensional histogram of the common logarithm of the
column-normalized probability of detection of the solar wind halo suprathermal
hardness, (y-axis), as a function of colocated Wind-SERM measurements of
. Blue traces demonstrate the expected increase of measured Wind 3DP 
with colocated Wind-SERM values of  (horizontal axis). This behavior is
consonant with Dreicer’s view of suprathermal tail formation being a sensitive
and increasingly important factor with increasing  = ( )1 , a behavior
internal to the SERM model for solar wind electrons (Scudder 2019b). Dotted
black horizontal lines are labeled by fixed corresponding value of κh (in cyan)
found when fitting the halo population of the Wind 3DP eVDF.
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numerically has the same moments of the strahl features
identified on Wind; the perimeter of the ellipse is at one e-
folding below the peak that occurs at v∥−Usw=Uds, v⊥= 0.
Indicated in this cartoon are two yellow dots that bound the
perpendicular half-width of the tear draped separatrix curve F

at the parallel drift velocity equal to the strahl’s drift
displacement, Uds, along the magnetic field. The relative size
of the strahl black ellipse, the bounds of the red sphere of radius
vϖ, and F correctly portray the following quantitative
statistical properties across the 4 yr surveyed: (i) the observed
strahl is found almost always outside the red sphere of radius

v ( )v  , and almost always well inside the (blue) separatrix
 ( )F  . These boundaries are determined anew for each eVDF
in the data set. As a result, nearly all the identified strahl
signatures, including the determinants of its density, satisfy
these two conditions and are shown to be enclosed within the
coulomb competitive, or transport domain that is interior to F .
Such a finding contrasts strongly with the often used model for
the strahl as a collisionless feature with anecdotal collisional
effects superposed.

If the strahl were aptly described as collisionless, it should be
observed where coulomb collisions are unimportant. Yet the
strahl is detected within the closed runaway separatrix F , a
locale where significant coulomb scattering and drag are
involved in keeping electrons localized inside F . The
antithesis of runaway is a generalized transport regime (inside
the separatrix) where the possibility of E∥ promotion into
runaway has been strongly shunted by coulomb collisions.
Despite this ongoing collisional competition, it is not so
overpowering as Dreicer had argued would characterize
electron populations with speeds < v ( )v v  (inside the red
sphere) where collisions are so vigorous they determine the
local form of the eVDF to be a local convected Maxwellian.

18.2. Strahl Is Located outside v ( )v 

Two quantities that are properties of the eVDF from opposite
projections along b̂ are the strahl’s bulk speed Uds and the
location where the minimum runaway speed v ( )v  is
identified and thus  is empirically constrained. These two
observables in the same eVDF are independent in the
experimental sense. However, 4 yr of observations show that
these observables are correlated as shown in Figure 24, with
Uds> vϖ, but with the inequality narrowing as vϖ gets larger
(when  becomes smaller in the data set). The 2D histogram
illustrates the frequency of occurrence of the time-synchronous
observables: v ( ) ( )v t U t, , ds . The probability of occurrence is
column normalized in narrow bins of vϖ, with bright yellow
colors denoting the vicinity of maximum probability within the
column and thus across columns; darker colors code logarith-
mically lower columnar probabilities. This 4 yr synthesis
shows the common occurrence of the strahl bulk speed leading
the boundary of the overdamped coulomb regime indicated by
the red sphere in Figure 23. The separation of Ud and vϖ is
clarified in Figure 25, where local variables are used to
construct the parallel separation S∥ given by

º - v ( ) ( )S 1 , 47U v

w
ds

s




showing it to be of order the simultaneously inventoried
parallel thermal spread of the strahl, ws∥.
Because it is identified by subtraction (see Salem et al.

2021), the peak of an identifiable strahl phase-space population
is displaced from the origin (see Figure 1), standing in phase
space with a bulk speed comparable to its observable thermal
half-width plus vϖ along the magnetic field. Thus, its
operational form is centered on its inferred moment bulk speed
with an extent of the order the thermal spread determined from
the moments over the culled phased density. From this
perspective the Wind 3DP strahl description flags features in
the eVDF with widths in parallel and perpendicular directions
to b̂ of essentially the moment inferred velocity space
dispersions about the moment drift speed, Uds. From this
viewpoint the low-speed side of the strahl phase space is
statistically located in the ion rest frame of order one parallel

Figure 23. Detected Wind 3DP strahl eVDF (black ellipse centered on its drift
speed Uds in the ion frame and extending by one parallel and perpendicular
strahl thermal speed from its peak at the bulk velocity) is found almost entirely
with the blue separatrix , but outside the coulomb dominant sphere red circle
at low energies where coulomb collisions compete favorably with E∥. Within
this red circle dynamics is critically damped by coulomb drag. A drifting nearly
isotropic Maxwellian is expected within this red circle. Inside the blue , but
outside the red circle, coulomb drag is still competitive with other forces.
Outside  electric field has driven particles locally into runaway, where they
are underdamped by the weakened residual coulomb collisions. The black
ellipse denotes the observed location of strahl with its measured drift speed
with respect to the ions of Uds, density, and anisotropic effective pressure with
Ps∥ < Ps⊥. As shown, the typical Wind strahl distribution is broader in T⊥ than
T∥ and the perpendicular strahl thermal speed is invariably smaller than the
half-width of  determined by the distance between the two yellow filled
circles, which is the half-width of  at v∥ = Uds. This implies that essentially all
strahl density is found by Wind 3DP to be within the coulomb separatrix 
determined by the recently measured .

Figure 24. Overview of the size of strahl drift speed and the radius of the (red)
spherical boundary in Figure 23 within which coulomb collisions are dominant.
The inclined cyan line shows that the strahl bulk speed is invariable outside the
sphere of coulomb dominance, whose radius v ( )v  is numerically determined
by the inventory of this paper that quantifies .
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strahl thermal speed below its bulk velocity, satisfying
- v( )U w vds s  . This in turn leads to the coordinated

behavior recorded in Figure 25.

18.3. Strahl Is Located inside  ( )U,F ds

In a similar vein, it is of interest to ascertain where the Wind
3DP strahl phase density is located in relation to the half-width
of the runaway separatrix, F , measured perpendicular to b̂ at
v∥−Ui,∥=Uds out to F ; this distance may be visualized as the
separation between the two yellow dots shown in Figure 23.

This distance has been computed for every spectrum (using its
own values of  and its own separatrix curve  ( ) ) and
contrasted with the observed Wind 3DP strahl’s perpendicular
thermal width, ws⊥. For this purpose we define the perpendicular

dimensionless distance
 

º^
-

^
( )( )

S , 48
U

w

, 0ds

s



where the numerator is the distance between the two yellow
dots in Figure 23. A histogram of S⊥ covering this 4 yr Wind
data set is shown in Figure 26. Although not Gaussian, the
mean (1.85) and mode (1.61) plus the shape provide
convincing statistical evidence that the observed Wind strahl
signatures are narrower than the newly determined operational
half-width of the runaway separatrix curve,  ( )UP ds , that passes
through the strahl bulk speed implied by the separation of the
yellow dots shown in this figure.

18.4. Strahl Density Fraction outside vϖ but inside 
Figures 23–26 suggest that nearly all of the strahl’s density

reported in the Wind 3DP moments is localized within the blue
runaway separatrix  ( ) , but outside the red sphere of radius
vϖ bound of Dreicer’s collisionally dominant zones; these
boundaries are both theoretically determined for the first time
by the newly available value of  of this paper.
A bi-Maxwellian phase-space density with moments equal to

the numerically reported moments of the strahl subcomponent
was used to numerically determine the partial density ns,part of
strahl electrons outside the red circle, but inside the blue
separatrix curve F in Figure 23. This integral was determined
for each of the more the quarter million spectra using their own
newly available values of v ( )v  and their separately delineated
runaway boundary curve,  ( ) . From these boundaries the
strahl density fraction inside F but outside v= vϖ was
determined and is summarized in histogram form in
Figure 27 after normalizing by the reported moment density,
ns, of the Wind 3DP data inventory (Salem et al. 2021). This
statistical assay of the density fraction inventoried in this
manner quantifies our conjecture that the distributed Wind
strahl subcomponents observed are nearly always found within
F with speeds outside νϖ in the ion rest frame, as is implied by
the black ellipse in Figure 27.

Figure 26. Statistical assay of perpendicular distance ̂ of the strahl peak from
runaway separatrix in units of the strahl’s moment perpendicular thermal speed.
Modal values are 1, and the average is 1.85, indicating that routinely the
separatrix is more than one and one-half strahl perpendicular thermal speeds
displaced from the peak of its phase-space density at v∥ = Uds, v⊥ = 0.

Figure 27. Probability distributions over 4 yr of the fraction of strahl’s moment
density inside the separatrix and outside the sphere where collisions are
dominant. Modal value is 100%, and the fraction above 80% is nearly 95% of
more than a quarter million spectra.

Figure 25. Wind strahl measured to have bulk speed Uds displaced from the
proton rest frame by parallel speeds at  +v ( )v v ws  . This localizes the
strahl as outside of the sphere of radius v = vϖ, where coulomb collisions are
dominant and produce nearly isotropic convecting Maxwellians. The cyan
horizontal line corresponds to the strahl bulk velocity being at the outer radius
of the collisionally dominant sphere.

23

The Astrophysical Journal, 934:151 (28pp), 2022 August 1 Scudder



19. Discussion and Conclusions

1. For the first time a method to measure ambipolar
E∥; 0.1 nV m−1 using the three-dimensional shape of
the eVDF at a single spatial location has been developed.
The measurement technique exploits Dreicer’s
(1959, 1960) description of the signatures of E∥ in the
eVDF that are embedded in the recent SERM model for
solar wind electrons (Scudder 2019b). The technique is
proofed, calibrated, and corroborated with a survey of 4
yr of Wind 3DP electron data and intracomparison with
spatial gradient observables not ordinarily available to an
essentially radially fixed spacecraft like the GGS Wind
vehicle.

2. The direct observable is Dreicer’s dimensionless parallel
electric field  and does not suffer from the usual issues
of trigonometry when inferring the very small magnetic-
field-aligned component of much larger E.

3. The precision/reproducibility of the  determinations is
computed across 4 yr of data to be 10% and the accuracy
demonstrated by external corroboration to be at essen-
tially the same level.

4. The technique has been used to segregate Wind time
series into intervals that objectively have scales long
enough to be those of the USSSW of solar wind
modeling. When Wind-SERM temperature gradients
across 4 yr of data collection are determined from
USSSW intervals, they are well within and more precise
than the error bars of the most recent published electron
temperature gradients as a function of bulk speed. While
the USSSW intervals found with this new technique
predominate in the 4 yr data set, the proliferation of
intervals with being USSSW intervals complicates
inventories of the solar wind properties. In a generalized
way the existence of these inconsistent intervals is a form
of aliasing not widely considered before when comparing
solar wind data products and simplified theoretical
models.

5. The observations in intervals inconsistent with being
USSSW contain much shorter scale structures with
steeper radial gradients of both signs and stronger E∥.
Morphologically these intervals principally occur for
solar wind speeds (U< 450) where corotational pressure
effects appear to disrupt the smooth picture of USSSW
usually modeled or presumed to be appropriate for
continuous time series in the solar wind. Scales
approaching the previously known 1 au estimates of the
correlation length in the magnetic field have been
determined in these regimes using the Wind 3DP data.

6. Over the 4 yr Wind data interval the mode of Wind-
SERM E∥ and  had average and modal values of 0.12
nVm−1 and ;0.8, respectively. Peak amplitude samples
and the mode of both quantities of unfiltered surveys
were impacted by no USSSW intervals in the data. The
observed size of E∥ is generally a decreasing function of
solar wind speed, while  is a slowly increasing function
of solar wind speed. When restricted to locales where
only USSSW gradients are inventoried, the distribution of
 is still ( )1 and strong in Dreicer’s sense, supporting
the premises and implications of the recently proposed
SERM (Scudder 2019b).

7. When focusing on USSSW regions, the size of E∥, the
generalized Ohm’s law, and the remaining local Wind

moment quantities have been used to determine the bulk
speed variation of the electron temperature gradient (i)
with vernier resolution exceeding all known reports, (ii)
with accuracy higher than that reported by the most
recent collection of radial profile fits, (iii) that are
completely consistent with these coarser profiles, and
(iv) that are tightly coherent in a two-zone model
showing that the electron temperature gradients depend
on bulk speed described by one branch of a hyperbola
(see Figure 20). The magnitudes of gradients decrease
nearly linearly between 260 and 530 km s−1 and then
level off at a constant value with a radial exponent 0.27 at
higher 1 au speed. These comparisons dramatically
illustrate the accuracy of the parallel electric field
determinations of the Wind-SERM approach; they
determine from single-point measurements the value of
the power-law exponent gradient only possible after
multiple orbital radial traverses by Helios and Parker
Solar Probe. This approach is only possible when the
Wind data are prescreened against the steep gradients and
strong E∥ found in non-USSSW intervals. These
corroborations establish the 10% accuracy of the
determinations of the Wind-SERM approach.

8. The short-scale structures encountered even show local
variations with radius of the opposite sign to that
anticipated in the widely considered spherically sym-
metric wind profiles. A simple model suggests how these
effects are readily expected for the present Wind-SERM
methodology that measures the local gradients of
pressure; however, they are produced. Candidates for
these shorter-scale compressive structures are those
produced by the inhomogeneities of corotating stream
interactions being swept past the spacecraft.

9. The theoretically expected enhanced hardness of
suprathermals with increasing  implicit in the runaway
phenomena Dreicer described has been demonstrated
using colocated data across the entire 4 yr period. The
inverse of the κ power-law strength parameter is
converted to measure the hardness of the spectrum and
shown to be positively correlated with increased size of
 (see Figure 22). Spectra with the lowest κ values and
highest hardness do indeed systematically accompany the
stronger values of  3 .

10. These large-scale quantitative tests involving coulomb
separatrices clarify that the strahl at 1 au is found in a
locale where collisions still compete successfully with,
but do not overpower, other forces as they do inside red
Dreicer’s sphere (see Figure 23) at low energies. The
Wind 3DP strahl is observed in velocity space, where
coulomb collisions compete with the tendency to follow
strictly the characteristics of the exospheric model. Most
certainly the observed strahl at 1 au is found where finite
Knudsen number transport determines its properties
rather than the scatter-free picture of the collisionless
exospheric explanation. Weak promotion of the strahl
into the halo via runaway might occur with as much as
10%–20% of the strahl’s density that is approaching the
F boundary with v∥;Uds. The strahl is collisionally
exchanging momentum and energy principally with other
electrons in the interior of the blue F separatrix; in this
way the identified strahl subcomponent is mixing with, or
even a part of, the nominal halo subpopulation along the
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heat flux axis within F . The very small number of strahl
electrons promotable by runaway across the F boundary
will be a source for the omnipresent halo electrons
routinely seen. It is possible that the role of coulomb
collisions neglected in almost all strahl-driven instability
calculations explains the absence of the predicted whistler
turbulence recently reported on Parker Solar Probe
(Cattell et al. 2022).

11. These organizational questions underscore the less than
clear observational distinction of the various subcompo-
nents of the observed eVDF. In fact, the strahl is
identified in Wind 3DP data processing as a locale where
the simplicity of the fitted core and halo subcomponents
do not resemble the observed eVDF. Since the fitted core
and halo models are rather simple even functions of v∥
and v⊥ in their own drifting frames, virtually any odd-
order Legendre needed pitch-angle dependence to
support the heat flux and thermal force effect in the
observations requires either (i) more complicated core
and halo model forms or (ii) as with Wind 3DP data
processing, the creation of another category termed strahl
where all unfit anomalies are aggregated. Thus, the mere
existence of a catalog of strahl signatures is a concession
that the core and/or halo model forms are incomplete
descriptions of the finite Knudsen number deformations
of the eVDF in the heat-carrying domain.

The organizational picture (permitted here by
measuring ) of the strahl phase space being within F

and outside the collisionally dominant (v> vϖ) region
provides an impetus for the idea that the strahl’s
distinctiveness is more reflective of core and halo fit
model simplicities than an endorsement of the strahl as a
certain collisionless remnant of the inner boundary
condition of the solar wind expansion. On the other
hand, the collisionless boundaries can still leave their
imprint; the present work raises the question whether the
imprint remains sufficiently clear as to be invertible for
remote information gathering.

12. The statistical properties of the velocity space location of
the Wind (3DP) strahl in relation to the red sphere v= vϖ
shown in Figures 24 and 25 by themselves are not
quantitatively invertible to what eVDF feature(s) are
identifiable as being at v= vϖ. It should be noted that the
bulk speed of the strahl is not the peak of the eVDF in the
strahl energy range. The bulk speed of the Wind 3DP
strahl is only the center of the excess eVDF above and
beyond that predicted by the core and halo model, which
must first be subtracted to reckon the size of Uds. That
such a strahl bulk speed exceeds a defensible estimate of
vϖ is of course informative, but is it actionable? Even
Figure 25 shows that the rms ws∥ is only approximately
the distance between the speed Uds and the vϖ red circle
in Figure 23. Because ws∥ is determined also as a moment
quantity, the connection of this number to the geometrical
deformation of the eVDF is by no means straightforward,
since the underlying shape that determines these moments
is not invertible from this pattern of moments. This, too,
makes it virtually impossible to transfer quantitatively the
impressions of the Wind 3DP trends seen in Figures 24
and 25 to a general algorithm on another spacecraft that
seeks to identify a feature on an otherwise general eVDF
where the strahl’s lowest energy extremity is found.

Complications of this type make it difficult to translate
the Wind 3DP findings about the localization of the strahl
into algorithms to identify vϖ via phase-space signatures
at strahl pitch angles that has been attempted by Berčič
et al. (2021). By contrast, the present paper’s SERM-
Wind technique appropriate for the opposite magnetic
field direction from the heat flow has been shown to be
corroborated by other observations that are related to the
size of E∥. It would appear that using the Wind-SERM
technique at these opposite pitch angles on PSP spectra
from where the strahl boundary has been identified could
usefully comment on the systematic quality, or lack
thereof, of such procedures employed by Berčič et al.
(2021).

13. The three corroborations in the present paper involving
electron gradients, hardness, and organization of strahl
kinematics produce strong ancillary testimony about the
accuracy and reliability of the new Wind-SERM
technique developed in this paper to quantify the size
of the 0.1 nVm−1 ambipolar E∥ and the size of its very
strong dimensionless variant, . The strahl finding also
shows that there is a middle ground between Maxwellians
everywhere based on collisional dominance and a
remainder where collisionless exospheric theory reigns.
This intermediate regime copes with strong forces and
collisional drags and energy losses that are neither
perturbative nor dominant, but nonetheless competitive
in the determination of kinetic equilibrium throughout the
strahl energies where the heat flux moment is determined.

14. The energy transport in hydrogenic plasmas is intimately
determined by describing almost all the electrons well—
not only where all the density is located, but also where
all the energy is carried—while simultaneously not
permitting parallel current, and still remaining a quasi-
neutral shield for the ions. With the presently documented
ability to measure E∥ and  it is possible to evaluate
more fully the premises and predictions of SERM
(Scudder 2019b): does the electron transport modified
eVDF reflect the presence and finite (nonperturbative)
size of E∥ whose presence and approximate size are not
negotiable, but set by the omnipresence of mass
dependence forces that are unavoidable on the astro-
physical stage? In sequels this inquiry continues.
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Appendix

A.1. Full Dreicer Formulae

Dreicer’s variables and their abbreviations as used in the text
are fully defined here in terms of customary CGS variables.
The equality of ED used in this paper and Ec by Dreicer
(1959, 1960) are also stipulated. The Lln expression alone is
written in terms of temperature e in eV units rather that in
CGS units that is indicated elsewhere by Te:
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The form above for L = L-ln lnc
e i provides a continuous

formula across the quantum mechanical regime,  10 eVe  ,
and represents an essentially equivalent form to two separate
equations (Fitzpatrick 2015, p. 64, Equation (3.124); also
Spitzer 1967, p. 126) needed for Wind plasma.

A.2. Reduction of the Divergence of e

The divergence of the gyrotropic electron pressure tensor
 º + -^

ˆ ˆ ( ˆ ˆ)bb bbP Pe e e is given by

 =  + - 

+ 

^
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· ( · )

· ( ) ( )

( · ) B B
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e e B
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where G≡ Pe∥− Pe⊥. Its magnetic projection is

 = -ˆ · · ( )b G ; A3e
dP

ds

d B

ds

lne

in terms of anisotropy, º ^P Pe e e  , it reduces to

 = +
-ˆ · · ( )( )

b . A4e
dP

ds

P d B

ds

1 lne e e

e





 

A.3. Dreicer and Fuchs Descriptions of Runaway

Dreicer’s considerations developed a minimum speed
threshold vϖ sufficient to predict runaway in a hydrogenic
plasma. This sufficient condition has a lower speed bound of
the form

 
v ( ). A5v

w Dreicer

3

e 

Subsequent work by Fuchs et al. (1986) agrees with Dreicer’s
sufficient finding; the careful reader should note that Fuchs’s
critical electric field Ec is confusingly different from Dreicer’s

in just such a way that for Fuchs’s definition of thermal speed,
the same formula predicts the same numerical speed as Dreicer
does at sufficient runaway.
In addition, Fuchs and colleagues pointed out that a more

general threshold for runaway could be identified after
considering energy loss and slowing down collisions. The
improved necessary condition shown by a Langevin analysis
indicated that a somewhat lower threshold could be identified,
showing that the lowest speed for runaway in terms of  had
the form

 

a a

z z

= = + =

= ´ =

= =

-

-

v

( )

Z0.9 1 3

3 0.81 0.467

0.467 1, A6

v

w

v

wFuchs

1 4

Dreicer

Fuchs
1 2 3 3

Fuchs Dreicer

r

e

D

e


 

where the numerical factor of 0.9 comes from numerical
determination of separatrices. The  scaling of vr is motivated
by Fuchs et al. (1986).
Presuming that the energy v found in each Wind eVDF

corresponded to Fuchs’s theoretical boundary necessitates
ζ= 0.467; such a value requires that all inventoried values
summarized above as ∣ ∣ would be systematically smaller than
previously found: E E0.467Fuchs Dreicer  . The experimental
test summarized in Figure 21 shows that the best corroboration
of the Wind v determinations with the observed variation of

( )UTer (Maksimović et al. 2020) is found with ζ; 1.1. Thus,
by external corroboration the operational quantity v of this
paper is associated only with Dreicer’s identification of the
boundary using over a quarter million determinations. The
relevance of the Fuchs hypothesis for the quantity v is thus
discounted by the χ2 test discussion about Figure 21.
A subtle point for identifying these different boundaries

involves the computation of their relative importance to the
modification of the shape of the steady eVDF across either. The
Fuchs calculation was aimed at explaining the scaling of
runaway for plasmas with higher Z impurities. The one-fourth
root dependence of the size of vr was especially effective in
lowering his predicted runaway boundary in plasmas with
Z= 9 that markedly enhanced the predicted runaway flux. It
may be that in hydrogenic plasmas with Z= 1 the sensitivity in
terms of the eVDF deformation or onset is not so strident that
current instrumentation is sensitive to the vr versus vϖ
differences. The arguments made in the text suggest that
consistency between finding v and linking it to  is that path
that leads to external validation of accuracy.

A.4. Recipe to Measure  from eVDF

The inverse of the square of the effective local thermal
speed, ( )w veff

2 , needed for Equation (13) in the main text may
be determined from the speed-dependent concavity profile for

( )f vln exploiting
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+ +
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, A7

w v

d f v

dv

w

d

dv

1 1

2

ln ln 1

1 1

2

ln 1

c
fh v

fc v

c

fh v
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eff
2

2

2

2
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2

where =m w kT2e c c
2 . This approach nicely separates -weff

2 into
the constant concavity of the thermal spread of fc(v) alone and a
second v-dependent correction term that reflects the kurtotic
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form of f (v) used in the solar wind eVDF modeling. The
correction term exhibits the expected contributions from the
ratio of the subcomponent distributions at the given speed.

Using Equation (9), a closed form expression for the needed
expression in Equation (13) takes the form
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It should be noted then that
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while the dimensionless curvature takes the form
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The dimensionless  function is found from the iden-
tity  = + 1.

A.5. Possible Source for Scales < 0Pe  and > 10Pe 

The morphology of the short-scale structures with wind
speed suggests that the Wind-SERM electric field analysis has
detected other pressure gradients in the plasma with scales
shorter than those associated with the logarithmic derivative of
solar wind pressure gradients that arguably would be restricted
between 2 and 3.33.

A possible source with the observed morphology are the
stream−stream interactions driven by corotation that preferen-
tially produce compressional disturbances oblique to the
magnetic field in slower winds at the fixed 1 au vantage point
of this Wind 3DP data set. The power shown in Figure 18,
extending out to dimensionless exponents of 100, suggests the
detection of gradient scales 1/50 the half au scales associated
with traditional spherical flows. These translate into scales
0.01 au in scale, compatible with structures already known to
be commonplace in the 1 au solar wind (Burlaga 1995).
Structures of these scales would pass over Wind in an interval
of approximately 0.04 days or with a duration of 56 minutes,
clearly resolvable by more than (30) Wind 3DP spectra.

The likelihood that < 0Pe  could be physical can be made
plausible by considering a tractible pressure radial profile with
superposed finite-amplitude pressure waves that would attend
snow plow compressions at corotating interacting stream
fronts. Convection of these quasi-standing waves in the rest
frame of the density compression could produce pressure
undulations or pulses that would appear to alternate about the
long-wavelength pressure profile. The cycle of crest and trough
of the perturbation suggests to the observer that the total
pressure is alternately increasing with radius and decreasing
with increasing radius. This plausible signature of compressive
disturbances will generate alternating local exponent signs,
depending on the amplitude of the perturbation relative to the
background pressure. This likely alternation from the very
same wave crests may have some bearing on the apparently

nearly identical cumulative occurrence of positive and negative
sharp structures in the wind data set.
A simple model of radial pressure variations superposed on

the longest scale with a radially decreasing pressure variation is
used in this section to motivate the appearance of counter-
intuitive radial pressure exponents that have the opposite sign
and/or large absolute values compared to those expected for
simple spherically symmetric solar wind solutions.
The following illustrative model takes the form

p+⎡⎣ ⎤⎦( ) ( ) ( )P r r r1 cos 2 . A11e r o
10 4

55 2

By construction, the disturbance Pe(r) has a radially growing
spatial wavenumber, so that the disturbances, shown in the top
panel of log–log Figure 28, develop sharper and sharper crests
with increasing radius, r.
On this graph paper, the logarithmic derivative definition of

P rPe
  reverts to minus the first derivative, with results shown in
the bottom inset. The background irreducible pressure profile’s
exponent without perturbations is indicated by small-amplitude
red curves in both panels, showing its constant weak positive
exponent corresponding to decreasing single power-law
pressure profile with increasing radius. However, as one passes
over each crest of the perturbation, the local value of P re 
alternately increases and decreases the estimate for P re  from
the background profile. If the disturbance is large enough, these
reversals can reverse the longest wavelength’s radial pressure
gradient exponent’s sign, flipping signs between half-cycles of
the perturbation. It should also be noted that this process can
also give rise to pressure exponents of the same sign as that of
the irreducible (red) profile, but of smaller magnitude. Looking
at Figures 17 and 18, rare values of < <0 2P re  are in
evidence. The dark gap around 0 in the Wind data may reflect
the relatively low probability for making observations of these
gradients when they pass through zero.
Being at a fixed location, Wind’s situation is slightly

different than this radial picture, since it is the passage of time
that brings new examples to the speed bin, rather than moving

Figure 28. Illustration of impact of mesoscale pressure P(r) variations
superposed on the irreducible slowest profile in red, inset (T). Illustration (inset
B) of aPe deduced from synthetic composite profiles in inset (T). Diamonds of
different colors in the two insets identify corresponding locations of the two
profiles between the insets. The cyan colored diamonds correspond to
enhancements of αP, while the green diamonds correspond to reverse gradient
regimes where pressure is growing with increasing radius, the opposite
behavior of the irreducible slowest profile that decreases as radius increases.
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to a different radial position. It is ( )E t U, that is sampled at
different times. From Figure 28 this situation occurs by the
spacecraft sampling the profile within the same speed bin with
different |∇Pe|.

This exploration shows that the high wavenumber informa-
tion in Figure 17 is not the appropriate data for corroborating
with the low wavenumber limited power-law characterizations
of solar wind pressure and temperature profiles.

A.6. Positive and Negative Scale Lengths

Logarithmic derivatives òX for a scalar physical parameter X
conveniently determine the local power-law behavior of X’s
profile, defined by

º -c
c ( ). A12r

d

d r

ln

ln


With this definition, when χ is a decreasing function of
increasing r, >c 0r ; conversely, when χ is increasing with
increasing r, <c 0r .

A.7. Relationship of Pe r  to Per

The total pressure is related to the parallel pressure by using
the anisotropy e :

= +( ) ( )P 1 . A13e
P

3

2e

e



Thus,

= + -( ) ( )1 , A14dP
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e e

e
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yielding

= - b
+

( )
( )

, A15P r P r
U

Ur
2

2e e
e e

  
 

where b º d dUe is a semiempirically known parameter
given in Equation (A17).

A.8. Runaway Separatrix  Construction

Mathematically the construction of the  ( ) separatrix
curve requires integrating two different branches that leave an
X critical point in velocity space;  and Te are parameters in
this formulation (Fuchs et al. 1986). These equations include
scattering off of electrons and ions. For the strahl studies
reported in this paper, the relevant separatrix  ( )T, e (such as
the blue curves in Figure 2 or Figure 23) was constructed for
each spectrum, allowing statistical comparisons (reported in the
main body of the paper) of the location of the observed strahl
relative to the sphere of coulomb collisional dominance (the
sphere bounded by red circle at vϖ in Figure 23) and the closest
point on the blue runaway separatrix  seen in the same figure.

A.9. Semiempirical Syntheses of the Wind Electron Parameters
1995–1998

1. Bulk Speed Dependence of Te:

a b g= + +-( ( )) ( )T U U ULog km s , A16e Te Te Te10
1 2

where a = 4.715Te , b = 0.0018Te , and g = - ´ -1.8 10 .Te
6

2. Bulk Speed Dependence of e :

a b= +- -( ( )) ( ) ( )U Ukm s km s , A17e
1 1

where a 0.750 and b ´ -8.8 10
s

km
.4

3. Bulk Speed Dependence of T re
 :

- - - =- -( ( ))( ) ( )b mU ckm s 10 , A18T r T r
1 5

e e 

where = -m 0.00185, =b 1.27, and = c 0.28 0.04.
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